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Central extensionsand physics
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Abstract.In this paper two themesare considered;first of all we considerthe
questionunderwhatcircumstancesacentralextensionof theLiealgebraof agiven
Liegroupdetenninesacentralextensionof thisLiegroup(andhowmanydifferent
ones). Theanswerwill be that if wegivethealgebraextensionin theform ofa left
invariant dosed2-formw on theLiegroup, then thereexistsan associatedgroup
extensioniff thegroup of periods ofc~,is a discretesubgroupofJRandw admitsa
momentummappingfor theleftactionof thegroupon itself
The secondthemeconcernsthe processof pre-quantization;we showthat the
construction neededto answer the previousquestion is exactly thesameas the
constructionof prequantumbundlesin geometricquantization.Moreoverweshow
that the formalism of prequantizationover a symplecticmanifoldandthefor-
malism of quantummechanics(where theprojectiveHi/bert spacesreplacesthe
(symplectic)phasespace) can be identified (modulosome (details, concerning
infinite dimensions).

1. INTRODUCTION AND NOTATION

Central extensionsplay an importantrole in quantummechanics:oneof the
earlierencountersis by meansof Wigner’s theoremwhich statesthata symmetry

of a quantum mechanicalsystem determinesa (anti-) unitary transformation
of the Hubertspace,which is uniqueup to a phasefactor e

10. As an immediate
consequenceof this phasefactor, one deducesthat given a quantummechanical
symmetry group G thereexistsan extensionG’ of G by U(l) (the phasefactors)

which acts as a group of unitary transformationson the HUbertspace.In most
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casesphysicistshavebeen succesfulin hiding these centralextensionsby using
larger symmetrygroups: SO(3)givesrise to a nastysign, sooneusesits universal

coveringSU(2) insteadfor which this problemwith signs disappears(the exten-
sion is trivial); the connectedcomponentof the Lorentz group has the same
problem, so one usesits universal covering SL(2, C) for which this problem

disappears.However, there are two importantexceptionsfor which this trick
doesnot work: for the translationgroupR2~of translationsin bothposition and

momentumit is not possibleto hide the phasefactors:oneobtainsthe Heisen-
berggroup. The sameproblem occursfor the Galilei group: it is nota symmetry
group of the (non relativistic) Schrodingerequation,but its central extension,

the Bargmanngroup, is. Another area•of physics whereone encounterscentral
extensionsis the quantumtheory of conservedcurrentsof a Lagrangian.These

currentsspan an algebrawhich is closely relatedto so called affine Kac-Moody
algebras,which are the universalcentralextensionof loop algebras.The central
terms in this case are known as Schwinger terms.More recently, theseaffine

Kac-Moody algebrasand their associatedgroups also appearin the theory of
strings.

Thecentralextensionsof Lie groupswhich occurin physics are often defined
at the algebra level (e.g. by meansof commutationrelations).This raises the

questionwhethersuch an algebra extensiondeterminesan extensionof the Lie
group.If we only haveLie algebras,then the questionis easyto answer:accord-
ing to Lie’s third fundamentaltheoremto eachLie algebrathereexistsa global
Lie group associatedto this Lie algebra.However,if the group of the original

algebrais fixed, then the answerbecomesmore complicated.The construction
neededto answerthis questionis alreadydescribedby E. Cartanin [Ca] where
he gave a geometricalproof of Lie’s third fundamentaltheorem.More recently
W.T. van Est has memoratedin [vE,l] this proof and its applicationsto the
caseof infmite dimensionalalgebrasandBanach-Liegroups.

After the completeanswerto the abovequestion(existenceof a Lie group
extensionof a given Lie group associatedto an algebraextension)we will show
that exactly the same constructionis used in the processof pre-quantization

(which is the first stepin theprocedureof geometricquantization[Ko], [Si&Wo],
[So,1]), althoughit doesnot directly give the well knownquantizationcondition:

the quantizationcondition entersby meansof conditionsimposedby physics.
Finally we discussthe relationbetweenprequantizationandcentralextensionsof
Lie groups (see also [Gu&St], [Si,!] and [Si,2]) and we show that the relation
between prequantizationand quantum mechanics is more than a formality:
the SchrOdingerequationon a Hilbert spacecan beinterpretedas the canonical

flow of a hamiltonianfunction on a symplecticmanifold (infinite dimensional);
the Schrodingerequation itself is in this formalism the (unique) lift of the
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hamiltonianvectorfield to theprequantizationbundle.
We concludethis introductionwith theremark thatwe do notclaim to present

essentiallynew results (all separatefacts will be known by variousspecialists).
The aim of this paper is to show a unified approachto various (seeminglyun-
related)problemssuchas (1) doesan algebraextensiondeterminea groupexten-

sion and(2) the quantizationproblemin physics.It it our hopethat suchaunified
approachwill lead to a better understandingof both classicalmechanicsand
quantummechanicsand the connectionsbetweenthem.

We fmish this section with some conventionsabout notation and language.
1. Except when stated otherwise explicitly we will always assumethat (i) all
manifolds (and especially all Lie groups) are connected, (ii) all manifolds,

functions,vectorfields andk-formsaresmooth(i.e. C°~).

2. Substitutionof a vector field X in a k-form (giving a (k-l )-form) is denotedby
1(X)andtheLie derivativein the directionof X is denotedby L(X).

3. Exceptwhenit denotesthe realnumber3.1415 . . ., the letter ir will always

denotea canonicalprojection betweentwo spaces;in the context it will be clear
whichprojectionis meant.
4. Abelian groups will be denotedadditively exceptthe group U(l) C C which

is denotedmultiplicatively.
5. We assumesummationconvention: when an index is given twice, summation
overthis index is understoodimplicitly.

2. AN ORIGIN IN PHYSICS:WIGNER’STHEOREM

In ordinary quantum mechanicsa physical systemis describedby a Hilbert
space J~’equippedwith an inner product denotedby (,). However, two non

zero vectors of .~° which differ by a complexconstantrepresentthe samestate
of the system,so the set of statesof the systemcanbe describedby the complex

lines in )r, i.e. by the projectiveHilbert spaceIP ~°. In the projectiveHilbert-
spaceonecan definea structureP(,) (with values in IR~,~ inducedby theinner

producton )~°asfollows:

Kx,y)~(y,x)
P(irx, iry) = for x, y E ~° \{0}

<x, x>~(y,y)

where ir denotesthe canonicalprojectionir : .)r\~~0}—* IP~°P(,) is often inter-

pretedasthe transitionprobabilitybetweentwo states.
With these definitions one then defines a symmetry transformation g as a

bijection of IP )r to itself which leavesthe structurePinvariant: Vx, y E IP~*’
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P(gx, gy) = P(x, y). According to a theoremdueto Wigner sucha symmetry
transformationcan be lifted to a transformationof the Hilbert space .)ritself.

ThEOREM 2.1. (Wigner): Supposeg is a symmetryof IP )~°, then there exists

either a unitary or an anti-unitary operator U(g) on )~°such that theaction of

g is inducedby theaction of U~g):

V x E IP)t° : gx = ir U(g)ir’ x.

Moreover, theoperatorU(g) is uniqueup to a phasefactor exp(iO). .

For a proof we referto [Bau] and[Barg,l]. It follows from this theoremthat

if we have a connectedLie group G of symmetry transformationsthen each
elementg E G will berepresentedby a unitary operatoron ~°(in aneighbourhood

of the origin eachelementg can be written as the square of anotherelement
g = h

2, U(h)2 is an (anti-) unitary lift of g (=i U~g)= U(h)2e10),the squareof an

anti unitary transformationis unitary and each neighbourhoodof the origin
generatesthe wholegroupif it is connected).

COROLLARY 2.2: SupposeG is a connectedLie group of symmetrytransforma-
tions on W~°,choosefor every g E G a unitary transformation U(g) on

then there existsafunction ~ : G x G -+ U(l)such that:

(2.1) U(gh)= U(g)U(h)~p(g,h),

andbyassociativityofgroupmultiplication this psatisfies

(2.2) cp(g, h)çc(gh, k) = p(g, hk)sp(h, k). .

If the U(g) can be chosensuch that the function p is constant1 thenit fol-

lows from formula (2.1) that U is a unitary representationof G on ~W;in the
generalcase (~pnot constant 1) one calls the representationU of G as unitary

transformationson )~°a <<projective representation>>,<<ray representation>>or
(<representationup to a phasefactor>> (becauseof thephasefactor ~ appearing

in (2.1)). In the next sectiona detaileddiscussionwill be given concerningthe
freedomin p andits implications;at the momentwe will be contentwith some
ad hocconstructions.

With the aid of the function ~ one can constructa unitary representationof

a central extensionG’ of G as follows. Define G’ G x U(l) as setwith mul-

tiplication:

(g fl. (h, ~) = (~h,~. . v,(g, h)’).
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It follows from relation (2.2) that this is a well definedgroupmultiplication,

andwe now can definea unitary representationof G’ on .~° by

g,~)x=~U(g)x forxE~°

where U(s) is the specific choice of the unitary lift of g to .)~°usedin the con-
struction of ~. The group G’ is a central extensionof G in the sensethat the

kernel of the canonical projection ir : G’ -* G is a centralsubgroupof G’ (iso-
morphicto U(1)).

Since G’ is reprensentedunitary on )r, it leavestheinnerproduct( , > and the
unit sphereS~°={xE ~*‘ (x,x) = 1) C .)t°invariant,i.e. G’ actson S,)~°leaving

(,) invariant. In the sequel we will often encountersucha situationin which a

group acts on a set, leaving some structureinvariant;we will sumni~arisesucha
statementby saying that the group is a symmetrygroup of the pair (set,structu-
re). With this conventionwe cansummarisethe aboveresult: if a connectedLie

group G is a symmetry groupof (IP?t°, F), then thereexists a centralextension
G’ of G by U(l) which is a symmetry group of (S~°,K,>). If we furthermore
depict the action of a group on a set by a wiggling arrow —..----------—~ then this
result canbesummarisedin the following commutativediagram:

G’ -—----~--~.--+(S)~,K,>)

(2.3) 1 ~
G ---~-----..------*(lP,?~°,P)

Remark2.3. The fibres of the projection ir : S~$f’-÷ are all circlesand the

actionof U(l) on S~t°leavesthe fibresinvariant.Moreover,U(1) actstransitively
without fixed points on thesefibres, henceS)t°isa principal fibre bundle over
lP~with structuregroup U(l); the central subgroupU(l) of G’ behavesasif

it were the structure group.

In physics one often asks the question whether the function p in (2.1) is
constant1, i.e. whether G can be representedas symmetrygroupof (S~°,K,))
ratherthan G’ (N.B. an equivalentformulation of the abovequestionis: whenis

G’ isomorphic to G x U(l) as a group, not only as a set).Onecan show that if
G is a semisimpleandsimply connected,connectedLie group, then the operators

U(g) canbe chosensuchthat p 1, i.e. in sucha caseG can berepresentedas a
symmetry groupof (S~°,K,)). If oneof thesetwo conditionsis not fulfilled then
in general there is no choice for the U(g) such that p 1. The variouscasesdo
occur in physics:(a) the groupSO(3)of rotationsis semisimple but not simply
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connected:the operatorsU(g) can be chosensuch that ~p(g,h) = ±1. (b) The
universalcoveringgroupSU(2) of SO(3) is semisimple andsimply connected:it
is a symmetry group of (S)r, I,)). (c) The restricted Lorentz group L is semi
simple but not simply connected:also in this casethe U(g) can be chosensuch
that ~p(g,h) = ±1. (d) The double coveringSL(2, C) of L is semisimple and

simply connected:SL(2, C) is a symmetry group of (S~°,K,)). (e) The group

11~2n acting as translationsin position and momentumof a physical systemis

simply connectedbut notsemi simple: thecentralextensionG’ is the Heisenberg
group. (f) The Galilei group occurring in non-relativisticmechanicsis neither
semi simple nor simply connected:the central extensionG’ is the Bargmann
group. A more detailed account of some of theseexamplescan be found in
[Barg,2],where theemphasisis on simply connectedLie groups.

Apart from the questionwhether the U(g) can be chosensuchthat p 1,

anotherquestionis evenmoreimportant:is the extensionG’ of G a Lie groupif
G is? The problemis whether the multiplication in G’ is smooth;if ~pis smooth
then the multiplication is smooth,but is this a necessarycondition?In physics
the groups G’ turn out to be Lie groups;the underlyingideais that in physics
one constructsa central extensionof the correspondingLie algebrarather than

of the group; G’ then is a Lie group associatedwith this Lie algebraextension.
This raisesimmediately the questionunderwhat circumstancescanan extension

of a Lie algebrabe <<extended>>to an extensionof the correspondinggroup?In
the next sectionthis questionwill bediscussedin more detail.

3. THE MATHEMATICAL PROBLEM: CENTRAL EXTENSIONS OF (LIE)
GROUPSAND LIE ALGEBRAS

In this sectionwe will discussthe relation betweenLie algebraextensionsand

Lie group extensions.Thereforewe startwith the definition of a centralextension
of an abstractgroup, together with a classificationof the possibledifferent
extensions.Thenwe will do the samefor Lie algebras.To obtainthe classification

of theinequivalentcentralextensionswe needthe basicdefinitionsof groupand
Lie algebracohomology,so we supply them. Finally we will specialisecentral

extensionsof groupsto centralextensionsof Lie groups andwe will discussthe
connectionbetweengroupand algebraextension.We will finish with the main
questionwhetheran algebraextensiondeterminesa groupextension.The answer
to this questionwill be given in §5. More information on theuseof groupcoho-
mology can be found in [StJ. For simply connectedLie groups the connection
betweenLie algebra central extensionsand Lie group central extensioncan be
foundin LBarg,2], [Si,l] and [Si,2J.
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3.A. Centralextensionsof abstractgroups

DEFINifION 3.1. Let G be a groupandA anabeliangroup.A groupG’ is calleda

central extensionof G by A if (i) A is (isomorphic to) a subgroupof the center
of G’ and (ii) G is isomorphicto G’/A. Two centralextensionsG” and G’2 of

G by A will be called equivalent if thereexistsan isomorphism~I : G” -+ G’2
such that (i) r,4 = ir

1 where ~r1is the canonicalprojectionof G” to G
and(ii) 4 is theidentity on the subgroupA : F(g’a) =

1(g’)a for any g’ in G”.

Remark3.2. Whenweusethelanguageof exactsequences(theimageof onemap
is the kernel of the next), a centralextensionG’ of G by A is given by a short
exactsequence

{o}-÷A-*G’-~G--~{1}

of group homomorphismswith the restriction that image (A) C center(G’). An
equivalenceof centralextensionsthenis a commutativediagram

~

{0}-*A I G-÷{I}

in which bothupperandlower exactsequencesrepresentthe centralextensions.

DEFINH1ON 33. (group cohomology). Let G be a group, then for any k E IN

denote by C~’(G, A) = { ~p : G” -* A } the set of k-cochainson G with values in

the abeliangroupA, which forms an abeliangroupunderpointwiseaddition of
functions.Onedefinesthe coboundaryoperatorök : C” -+ C~’+ 1 by

~

(3.1) + (— l)~~ g
1_1,~~g1~1,g1~2

+(~1)”~co(g1,...,g~)

andone calls Z’~(G,A) = ker(~~)the set ofk~cocyclesandBk(G,A)=im(~~_1)

the set of k-coboundaries. It is easy to verify thath = 0, hence

H”gr(G, A) = ker(ök)/im(~k_l)is a well defined abelian groupcalledthe k-th
cohomology group of G with values in A (the subscript ~gr>>denotes<<group>>
to distinguish these cohomology groups from others).
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PROPOSITION 3.4. The inequivalent central extensionsof a group G by A are

classifiedbyH
2gr(G~A).

Proof Let G’ be a central extension of G by A, denoteby ir the canonical
projection from G’ to G andlets : G —* G’ be a sectionof G’ i.e. a mapsatisfying

irs = id(G). It follows that for any g, h E G there exists an element yi(g, h) EA

suchthat:

(3.2) s(gh)=s(g)s(h)p(g,h).

measuresthe extentin which thesections fails to be a homomorphism). Since

multiplication in G’ is associativeit follows that the map p : G x G —~ A is a
2-cocycleon G with values in A. If s’ is anothersection then thereexistsa func-
tion x : G -÷ A such that s’(g) = x(g)s(g);the associated2-cocyclep’ is relatedto

~ by p’ = — S
1x. We concludethat the extension G’ determinesa unique

cohomologyclassin H
2gr(G, A).

Conversely let p be a 2-cocycleon G with valuesin A representinga particular

cohomologyclass,thenwe definean extensionG’ by:

(3.3) G’ = G x A -with multiplication (g, a) (h, b) = (gh, a + b—p(g,h)).

One verifieseasily the following facts: (i) the condition p a cocycleimplies that

(a) p(e, e) = p(e, g) = p~g,e) for all gin G wheree denotesthe identity in G, (b)
(e, p(e, e)) is the identity of G’ and (c) this multiplication is associative;(ii)

(g, a) -÷ g definesG’ as a central extensionof G by A; the canonicalinjection
A -÷ G’is given by a -+ (e, a + p(e, e)). By choosingthe sections(g) = (g, 0) one
shows that this extension determinesa cohomology class representedby p,
showingthat this constructionis a left inverseto themap <<extensions-+ cohomo-
logy classes>>constructedabove.

Finally let and be two 2-cocycleswith associatedextensionsG” and
G’2 and suppose4 is an equivalencebetweenthem. By definition of equivalence
4 must be of theform F(g, a) = (g, a + X(g)) and oneverifies easily that <<cJ~a
group homomorphism>>implies that p

2 = ~p1+ ~y, proving the proposition.
QED

COROLLARY 3.5. If G is a connectedLie groupofsymmetriesof IP~ then the
mapping ~ of corollary 1.2 is a 2-cocycleand the associatedcohomologyclass

E~]EH~,(G,U(1))dependsonly on theaction ofGon IP)~°,noton thespecific
choiceofthe unitary maps U(g) on theHi! bert spaceIC. I

3B. Centralextensionsof Lie algebras

DEFINITION 3.6. Let ~ be a Lie algebraand IRP an abelian Lie algebra.A Lie
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algebra g’ is called a central extensionof ~ by IR’-’ if (i) IR” is (isomorphicto) an

ideal containedin the centerof g’ and (ii) g is isomorphic to 9’/IRP. Two exten-
sions will be called equivalent if thereexistsan isomorphism(of Lie algebras)
which is the identity on the ideal IR” and which is compatiblewith the <<pro-
jections>>to g.

Remark3. 7. In the languageof exact sequencesa central extensiong’ of g by
lR~is given by a short exactsequence

~0}—*IRP -+g’-+g--~’{0}

of Lie algebrahomomorphismswith the restrictionthat image(IRP) C center(g’).

An equivalenceof centralextensionsthenis a commutativediagram

~0}-÷IRP I

in which bothupperandlower exact sequencesrepresentthe centralextensions.

DEFINI11ON 3.8. (Lie algebracohomology). Letg be a Lie algebra,then for any
k E N denoteby C” (g, R~)= {w : g” -+ lR~J w is k-linearandanti-symmetric}

the set of k-cochainson g with valuesin theabelianLie algebraIR”, which forms
a vector spacein the obvious way. One definesthe coboundaryoperator ~k

:Ck +C~’~by:

(3.4) (ö~w)(X1

(— 1 )‘~f~([X,,~], X1, ..., X~_1,X1÷~ ~ ~ ~+ ~ Xk +
1’~i<f<k+ 1

and one calls Z~c(g,JRP) = ker(~~)the set of k-cocyclesandB”(g, IRP) =

= im(ö~_1)the set of k-coboundaries.One can verify that = 0, hence

H”ai(9~ JRP) = ker(S~)/im(~~_1)is a well definedvector spacecalled the k-th
cohomologygroup of ~ with valuesin JR” (the subscript<<al>> denotes<<algebra>>
to stressthat it concernsLie algebracohomology).

Remark 3.9. In formula (3.4) one recognises(a part of) the formula for the
exterior derivative of a k-form and indeedif G is a Lie groupwith Lie algebra
g, if w is a left invariantk-form with valuesin [Ri’ (i.e. p separateleft invariant

k-forms) andif X1, ... ,X~÷~ arek + 1 left invariantvectorfieldson G (where we
identify left invariantvectorfieldswith elementsof the Lie algebra9) then is
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just the exterior derivative on thesep k-forms. It follows that the Lie algebra

cohomologygroups are isomorphic to the de Rham cohornologyof left invariant

forms with valuesin JR~:H”~ai(g,1RP)~H~~l.dR(G,JRP)~[HlClidR(G, IR)]P.

PROPOSiTION3.10. The inequivalentcentral extensionsof a Lie algebrag by 1R~

are classifiedby H
2ai(

9~]RP).

Proof Let g’ be such an extension, ir : g’ -÷ g the canonicalprojection and

o : g -+ a section of g’, i.e. a linear map satisfying ira = id(g). It follows that

thereexistsa mapw from g X g to IR” C g’ suchthat:

(3.5) a([X, Y]) = [u(X), a(Y)] + w(X, Y),

and from the Jacobi identity in g’ one deducesthat w is a 2-cocycle. Therest

of theproof follows thesamepatternas theproof of proposition3.4,so we leave

it to thereader.QED. .

3C. Central extensions of Lie groups and associatedextensions of their Lie

algebras

In this subsectionwe will always work with the following situation: a central

extensionof groups{0}-÷A -* G’ -* G -+ {1}, in whichA, G’ andG areconnected

Lie groups and the arrows Lie group homomorphisms(i.e. C~group homo-

morphisms);in particular ir : G’ —~ G denotestheprojection. In sucha casewe

will say that G’ is a Lie group(central) extensionof G by A. SinceA is a con-

nected abelian Lie group, its universal covering group is (isomorphic to) IR1’

with addition of vectors. It follows that a neigbourhoodof the <<identity>> in A

is isomorphicto an open subsetof lR~containing0, so we havea canonicalway

to identify the Lie algebraof A (i.e. the tangentspaceat the identity) with lR~.

The Lie algebrasof G’ and G wille be denotedby 9’ and ~. Themap ir : G’ -÷ G
inducesa map at the algebralevel7r~: g’ -+ g which is readilyseento be a central

extensionof g by lR~(which is the algebraof A). To facilitate the discussions

we introducethe following notations:Ext(G, A) will denotethesetof all inequi-

valentLie group centralextensionsof G by A andext(g, IRP) will denotetheset

of all inequivalent Lie algebra central extensionsof g by IR”. In the previous

section we have seenthat ext(9, lR~)is isomorphic to H
2ai(9~IRP). More facts

about extensionsof Lie groups (not only central ones)can be found in [Sh]

and [Ho].
What we now want to do is to establish a map A betweenH2r(G~A) and

H2
0,(9, IRP) which associatesto the cohomology class representingthe exten-

sion G’ of G the cohomology classrepresentingthe extension g’ of g. However,

therearesome difficulties relatedto the fact that we haveto do with Lie groups
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which are in particularsmoothmanifolds. If G is a Lie groupand p a 2-cocycle
with valuesin A then we can not guaranteethat thegroup G’ definedin formula
(3.3) is a Lie group. If this cocycle~ is asmoothfunction then we aresurethat

G’ is indeeda Lie group (and moreover a Lie groupextensionby A), whichsug-

gests that for Lie groups we haveto restrictourselvesin the definition of group

cohomology to smooth functions. The cohomology groups derived in this way

(usingfunctions p : G” —*A which are smooth)will be denotedbYH”:
5~(G,A),

the subscript <<s>> denoting <<smooth>>.However, in the generalcaseH~,gT(G.A)

doesnot classify all centralextensionsof G by A, but only thosewhich admita

global smoothsection (see §5). The appropriate cohomology theory in which

H
2~(G,A) does classify the Lie group central extensions,is the onebasedon

e-smoothcochains,i.e. cochainsp : G~’-÷A which aresmoothin a neighbourhood

of the identity e” E G”, the resulting cohomology groups will be denotedby

H2ezgr(G~A).

PROPOSITION3.11. Ext(G, A) is ~‘dsomorphic~to H2e:~(G,A).

Proof (sketch). If G’ -+ G is a centralextension,then G’ is in particulara locally
trivial principal fibre bundle over G with structuregroupA, hencethereexistsa
sections : G -+ G’ which is smoothin a neighbourthoodof e. Consequentlythe
associated2-cocycle is smootharounde2 E G2, hencedefines an elementof

H2e:gr(G~A).

Converselyif ~ is a representativeof an elementof H~,gJ(G•A), then p is
smootharoundthe identity. Using the factsthat G andA are topologicalgroups
and that~pis continuousaroundthe identity, it is easyto constructa fundamental

systemof neighbourhoodsof theidentity e’ E G’ = G x A (thegroup constructed

in formula (3.3)) which turns G’ into a topologicalgroup. Thenusingthe facts
that G andA are Lie groupsand that ~pis smootharoundtheidentity oneshows

that G’ admits the structure of a Lie group (lemma 2.6.1 of [Va]) for which

ir:G’-~GisaLiegroupmorphism.QED .

Remark3.12. Thereexist canonically definedmaps

Hk:gr(G,A) -+ H”esgr~’A) —* H”gr(G~A)

which associateto a cocycle representinga cohomology class the cohomology
class of the samecocycle in the cohomologygroupwith less structure;what we
will show in this section is that thereexists a mapA : H 2ejgr(G, A) -+ H2g

1(9~lR~)

with the property that if [p1 representsthe extension ir : G’ -÷ G then A[~i]

representsthe extensionir~: —~g. We will seein §5 that the mapA is in general
neithersurjectivenor injective.
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Construction 3.13. To define this map we proceedas follows: choosep left
invariant vectorfields Y

1 Y,, on G’ which form a basisfor the Lie algebraof

A; then choosen left invariantvectorfieldsZ1 ...,Z~on G’ suchthat Y1, ...,

is a basis of the Lie algebra9’ of G’. It follows that the left invariant
vectors = ir,~,Z,on G form a basisof theLie algebrag of G. Finally denoteby

13” the left invariant 1-forms on G whichare dual to thebasisX1,...,X,, of

g and denoteby ~ a
1’ the left invariant1-forms on G’ suchthat cr1, ..., a1’,

..., ir’~/3” are dual to the basis Y
1 Y,,, Z~,..., Z~,especiallya’(Y1) = ö’~.

SinceA is containedin thecenterof G’ wehave [Y1, ~‘1~= 0 = [Y1, E,] and there
exist constantsc./’ andd11T suchthat:

(3.6) [Ef,EJJ=c~/’Zk +d~~
TY~.

It follows immediately that [X,, X
1] = cj/’Xk. By duality one derives the fol-

lowing identities:

(3.7) dar = — — d~1n7r*!3iAir’~’/3
1 (full summation)

from which one deducesthat daT is the pull back of a closed 2-form WT =

= — ~ d,f13’A I3~on G. The map a(X
1) = from ~ to g’ is a sectionof the Lie

algebraextension7r,~: g-~g, andit follows easily from (3.6) and (3.7) that the
2-cocyclew with valuesin IR” associatedto this sectionaccordingto proposition

3.10is given by w = (~) w
T ®

What follows at this point is not directly relevantfor the presentdiscussion,

but it is appropriateto mentionit here.SupposeG is a Lie group,M a manifold,
4): G x M-÷MaC°mapand denote4(g, m)by 4)(gXm),i.e.4(g) :M-+M a
map. The map 4 is calleda left action of G on M if it satisfies4)(.gh)= 4)(g) 4(h);

it is calleda right actionif it satisfies4)(.gh) = 4)(h)4(g).

DEFINITION 3.14. If ‘I is an action (left or right) of G on M andif X E g, we

define the fundamentalvectorfield XM on M as thevectorfield associatedto the
flow 4)(exp(Xt)) on M.

In the caseof a left action we have cI(g)~XM = (Ad(g)X)~for a right action
this formula becomes4(g)*XM = (Ad(g’)X)~.We now assumethat the reader
is familiar with the definition of a principal fibre bundle over a manifold; we
recall the definition of a connection.

DEFINITION 3.15. A connection 1-form a on a principal fibre bundleP over M
with structuregroup G (in particular4 : P x G -÷ Pdenotesthe (right) actionof
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G on F) is a 1-form with valuesin theLie algebrag of G satisfying:
(i) VXE9 a(X~)=X

(ii) VgEG 4)(g)*~yAd(g_l).a.

PROPOSITION3.16. The 1-form a on G’ with valuesin theLie algebraofA K”

defined by a = (a’) a’ ® Y, is a connection1-form on the principal fibre

bundleG’ over G with structuregroupA. .

Construction 3.17. We now proceedwith the main discussionof this subsection.
Let s be an arbitrarysectionof the extensionir : G’ —* G by A which is smooth
aroundthe identity and let ~pbe the associatede-smooth2-cocycle,thenformula
(3.3) definesan isomorphismbetweenC’ and G x A which is smootharoundthe
identity. Hencethis isomorphismdefinesanidentificationbetweeng’ andg x IR~
identified with the tangentspacesin the identities.Using this identification,an

elementary calculation shows that for (X, v), (Y, w) E ~‘ with X, Y E g andu,
w E lR~the commutatoris givenby:

[(X, v), (Y, w)1 = ([X, Y], fZ(X, Y))

with

d d
(3.8) f~(X,Y) = — — ~‘(exp(Xt), exp(Ys))—4p(exp(Ys),exp(Xt))}

dt t=O s=O

(N.B. Here we treat the function ~pas if it werea function to K” insteadof to
A; this is permitted becausewe are only interestedin the valuesaroundthe

identity of A). Since p is a 2-cocycleon G with valuesinA it follows that ~7is a
2-cocyclewith valuesin K” on the algebrag (it also follows from the fact that
g’ is a Lie algebrain which the commutatorsatisfiesthe Jacobiidentity). A dif-
ferentsections’ of G’, which is equivalentto adding the boundary&x of a 1-
cochain X to p, would havechangedthe 2-cocyclef~with the boundaryof the

1-cochain~ definedby:

d
= — ~(exp(Xt)).

dt

From theseobservationswe deducethat the map definedby (3.8) from e-smooth

group 2-cocycles‘p to algebra2-cocycles~l inducesa map ~ : H~,g,(G~A) -÷

-÷H
2~,(g,IR”).

Remark3.18. We know in anabstractway that thealgebra2-cocycleso (defined
in construction3.13) and fZ (definedin construction3.17)on g with valuesin
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K” haveto differ by a 2-coboundary.However,we can indicateexplicitly asec-

tion s of the bundle G’ which yields according to formula (3.8) the algebra

2-cocycle w = (LIT) of the initial construction (~ir*wr = daT, aT dual to

The exponentialmappingfrom a Lie algebrato an associatedLie groupis a dif-

feoniorphismin a neighbourhoodof the identity; the 2-cocyclew is constructed

by meansof the section a of g’ —~ g defined by o(X
1) = E~,so we can define a

sections of theextensionG’ -+ C by: s(expGX) = expG a(X) in aneighbourhood

of the identity andarbitraryelsewhere.This sectionthenis e-smoothandcalcula-

tion of (3.8) for the 2-cocycle associatedto this section yields the algebra2-

cocyclew.

SUMMARY 3.18. We can summariseour results in the following commutative

diagram

H
2,~(G,A) ~ )H2esgr(G~A) 2 )H2d(9, IR”)

~NNI_
Ext(G, A) > ext(~,R~)

where themap(1)is thenatural inclusion, (2) is themapA definedin construction

3.17, (3) is the map definedin proposition 3.4 when restrictedto smooth2-co-

cycles. (4) is the equivalenceof proposition3.11, (5) is theequivalenceof pro-

position 3.10, and (6) is the map which associatesto the Lie group centralexten-
sion yr : G’ -÷ G the extension7r~: TeG’ —~ TeG of Lie algebras.Now the question

arisesnaturally whether one of the maps 1, 2 or 3, 6 is invertible or not. As
alreadysaid in remark 3.12 in generalneitherof the two maps2, 6is invertible:

there exist different group extensionswith thesame algebra extension and there

exist algebra extensionswhich do not derivefrom a groupextension.Moreover,
there exist group extensionswhich do not admit a global smoothsection, i.e.
which do not determinean elementof H2, gr(G~A), hencein generalthe maps

1, 3 are not invertible. On the otherhand,if G is a simply connectedLie group
all the arrows are invertible. In §5 we will derivenecessaryand sufficient con-
ditions under which an algebraextensionis associatedto a groupextension,from
which we can deducethe claimsmadeabove.

4. <<CENTRAL EXTENSIONS>>OFMANIFOLDS

As a particular caseof theprevioussectionwe haveseenthat if G’ is an exten-

sion of G by a 1-dimensionalabelianLie groupA (i.e. A KID with D a discrete
subgroup of IR), then G’ is a principal fibre bundle with connection1-form a
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over G with structuregroup A (proposition 3.16) and da = w a closed (left

invariant)2-form on C. Moreoverwe haveseenthatalsoin (quantum)mechanics
a principal fibre bundle (with fibre U(1)) occurs (remark 2.3). Thisshouldmoti-

vate the questionsstudied in this section:supposeM is aconnectedmanifoldand

c~a closed 2-form on M. Under what conditions does thereexist a principal

fibre bundle ir : Y -+ M with structuregroupKID, D a discretesubgroupof K,

together with a (connection) I-form a on Y such that da = ir*ca? If it exists,
whatare thedifferent possibilitiesfor (Y, a)?

In the next sectionswe will show that the answersto these questionstell us
how to constructcentral extensionsof Lie groups, how to constructprincipal
fibre bundlesover symplecticmanifolds (prequantization)andhow to duplicate

the situationof diagram(2.3) for classicalmechanics.

4A. Definition of thegroupof periodsPer(w)

We startwith a closed2-form w on a connectedmanifold M andwe choosea

cover {U, j i E I) of M such that all finite intersectionsU,1 fl . . . fl Ujk areeither
contractibleor empty (e.g. one can choosethe U~geodesicallyconvexsets for
some Riemannianmetric on M). By contractibility of thesefinite intersections

thereexist 1-forms i~,, functionsf11 and constantsa,,~suchthat:

~ = w on U, (w is closed)

(4.1) — = df11 on U, fl U~(withJ~1=

~.J, +f~~+fkf=aI/k on U fl U~, fl Uk.

In order to definethe group of periodsPer(w) we needa few words on Cech
cohomology.The set Nerve({U,}) is definedby:

Nerve={(i0 i,,)EI”~U10fl...flU.~r/=cb,k=0,l,2,...}

andanelement(i0,. i~)is calleda k-simplex.With thesek-simplicesone defines
the abelian group C~({U,})as the free Z-module with basisthe k-simplices,i.e.

C~({U1})consistsof all finite formal sums~ c10 ,~(i0 ik )with c10 -- ,ik E Z;
elementsof C~are calledk-chains.BetweenCk andC~1we candefineahomo-
morphismak calledthe boundaryoperatorby:

ak(1O

on thebasisk-simplicesandextendedto Ck by <<linearity>>.

A homomorphismh : C~—~ A from the k-chains to an abeliangroup A is

completely determined by its valueson the basis k-simplices h(i0, ... ik); it is
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calleda k-cochain if it is totally antisymmetricin the sensethat if two entries
i, and in (i

0, ..., i,,~)are interchangedthen h changessign. In this sensethe
constantsa.,~defined in (4.1) form a 2-cochainwith valuesin A = K. The set
of all k-cochainswith valuesin theabeliangroupA is denotedby C~’({U,}, A);

equippedwith pointwiseadditionof functionsthis is anabeliangroup.By duality
we candefine coboundaryoperators~ : Ck({U1}, A) —~C~+ ‘({U1}, A):

(ökhXc)= h(~)k÷~c) for cE Ck+ 1(W,}).

One can verify that a~a~+1 = o~andhence = 0. It follows that B” =

= mi(.~~_1~(whose elementsare called k-coboundaries)is containedin Z~’=
= ker(b~)(whoseelementsarecalledk-cocycles),sotheirquotientH~1~({U,},A)=

= z”/B” is a well definedabeiangroup calledthe k-th Cechcohomologygroup
associatedto the cover {U,} with valuesin A. It follows directly from (4.1) that

the2-cochaina is a 2-cocycle.

Remark4.1. One canshow that the Cech cohomologygroupsH~’c({Ui}, A) do

not dependupon the chosencover (U,) (with the restrictionsimposedon sucha

cover asabove),soone usuallydenotesit byHkc(M, A). Moreoveronecanshow
that for A = K theseCechcohomologygroupsH” c(M, K) are isomorphicto the
de Rhamcohomologygroups H” ~M, K) (e.g. see[Wa]). In particularthe map
[w] -+ [a] which associatesto the cohomology classof w in H

2~U~(M,K) the

cohomologyclass of the 2-cocycle a in H2C(M, K) is the well definedisomor-
phismbetweenH2~(M, K) andH2~(M, K).

DEFINITION 4.2. Per(w) = im(a : ker a
2 -÷ K) where a is the 2-cocycledefined

in (4.1).

PROPOSITION43. Per(w) is independentof the various choiceswhich can be

madein theconstructionof the2-cocyclea.

Proof If z~,is replacedby t9~+ d~,(with Ø~a function on U,) thena.,~is not

changed;if f,1 is replacedby f,, + c.1 (with c,1 aconstant)then is changedto
(a + &),j~ but by definition of Per(~)this doesnot changePer(w) becauseÔc

is zeroon ker a. Sincethesechangesexhaustthepossiblechoicesin the construc-

tion of a thepropositionis proved.QED

Remark4.4. If w is replacedby ~ + di~then i~,is replacedby i9~+ z9 andfq is
not changed;it follows that Per(w) depends only upon the cohomologyclassof

w in the de RhamcohomologygroupH
2~JJ~(M.K).
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PROPOSITION4.5. Let D be a subgroupofK containingPer(w), then the cocycle
a can be chosensuch thataffkED.

Proof N..B. This is a purely algebraicstatement;no topological argumentsare

involved andD might be densein K. We definea homomorphismb :

-~ KID as follows: on the subspaceim(a2)b is definedby: b = iraa2—’ where ~r
is the canonicalprojectionK -~ KID; this is independentof the choicein a2—’ by

definition of D andPer(w). Now KID is a divisible Z-moduleso thereexistsan

extensionb to the whole of C1 (see [Hi&St], § 1.7). SinceC, is a free7L-module,
thereexistsa homomorphismb’ :C1 -+ IRsatisfyingirb’ = b. Finally wecanreplace
the functions f,~,by ~ — b’,1 which changesthe cocycle a into a — öb’ and by
constructionof b’ it follows that 7r(a11~— (~b’)jJk) 0, showingthat this modi-
fied cocyclehasvaluesin D as claimed.QED •

Nota Bene 4.6. The simplex (i/k) is clearly not in ker a, neverthelesswe have
shown that the cocycle a can be chosensuch that it takeseverywherevaluesin

D containingPer(w)!

413. Constructionof the R/D principal fibre bundle (Y, a)

If D is a densesubgroupof K then KID is not a manifold in the usualsense

(althoughit is a diffeological manifold [So,2], [Do], an S-manifold [vE,2] or a
Q-manifold [Barr]), so from now on we will alwaysassumethat D is a discrete

subgroupof K. Sincewe alsoassumethat it containsthe group of periodsPer(w),
this conditionexcludessomepairs (M, w) (the easiestsituationwe know of where
Per(w) is denseis on 5’ x S’ x S

1 x S’ with w = dxi” th
2 + t dx3 A dx4 where

t is irrational). On the manifold KID we will usethelocal coordinatex inherited
from the standardcoordinate on K. Finally we assumethat the functionsf,~
havebeenchosensuchthat the cocyclea takesits values in D everywhere.With

theseassumptionsit follows that the functionsg.1 : U, fl -+ RID definedby
g~(m)= 7r(f11(m))satisfy thecocyclecondition

g~f+gJ~+g~,=OonU.flL~.flU~,

so they define a principal fibre bundle ir : Y —~ M with structuregroup KID,
local charts U1 x KID with projection ir(,n, x1) = m, and transitionsbetween
charts

U. x KID ~ (m, x.)-+(m, x1 +g,1(m))= (m, x~)EU x KID;

the action of y E KID on Y is givenon a local chart LI1 x KID by (m, x1) . y =

= (m, x, + y). On Y we can define a 1-form a as follows: on the local chart

x RID it isgiven by
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(4.2) a=7r*~,+dx,,

which is correctly definedglobally becauseof the constructionof the f,1 (N.B.

althoughx, is in generalnota global coordinateon KID, dx1 is a globally defined
1-form). In fact a is a connection1-form on the principal fibre bundle Y if we

identify the Lie algebraof RID with K itself as tangentspaceof 0 E JR. Since

(4.2) implies da = ir”w, we cannow answerthe questionposedat the beginning
of this section.

PROPOSITION 4.7. A principal KiD fibre bundle Y over M with a compatible

connection form a exists if Per(w) is containedin the discretesubgroupD.

Proof The if part is shown in the constructionabove. For the conversewe

reasonas follows: if (Y, a) exists, then thereexist transitionfunctionsg,1 : U~fl

n U1 -* KID. For a general connectiona the local expressionis given by
a = Ad(g i)7r*i~+ g~dg; in this casethe structuregroupA is abelian,hencea
is expressedlocally by a = 1r*~+ dx. and the condition da = ir”w implies

= w. By contractibility of 11, fl the existenceof functionsfq satisfying
(4.1) follows and the original bundle is shown to be obtainedby the process

describedabove.In particular lr(aI,k) = 0, i.e. a,11~E D, showingthat Per(w)cD.
QED .

4C. Classificationof thedifferentpossibilities(Y, a)

Two <<bundleswith connection>>(V. a) and (Y’, a’) will be calledequivalentif

there exists a bundle diffeomorphism~ : V -+ Y’ commuting with the group
action(i.e. if ‘p(m, x)= (m,x’)then ‘p(m, x + y) = (m, x’ + y)) suchthat ‘p*a’ = a.

With future applicationsin mind we will relax thenotionof equivalenceslightly,
usingthe following definitionof equivalence.

DEFINITION 4.8. Suppose8 is a subgroup of the vectorspaceof all 1 -forms on

M, then we will call an extension(V. a) over(M, w) 8-equivalentto anextension
(Y’, a’) over (ill, w’) if thereexistsa 1-form t~E 8 and a principal fibre bundle

equivalence‘p : V -+ Y’ (i.e. p commuteswith the projection to M and‘p is equi-

variantwith respectto the action of the structuregroupKID), suchthat p*a’ =

= a + 7r*~it follows that w’ = <~+ d,~,i.e.thecohomologyclassesof w andof
LI’ are thesame,hencetheir groupsof periodsarethesame.

Remark4.9. One sometimesborrowsthe languageof exactsequencesto denote
principal fibre bundles(e.g. [Br&DiI): the principal fibre bundle ~r: V -+ M with

groupA then is denotedby thesequence:
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{0}-*A ----~V-~M

where the first arrowis addedto showthat theactionof A on V is without fixed

points. Using thesesequences,two bundleswith connection(Y, a) and(V’, a’)
are 0-equivalent if there exists a commutativediagram of the following form:

(V,a+T*0)

{0}-+A (M,w+dO)

~,, *~(Y,a+ir0)

in which both the upper and the lower sequencesdenotethe principal fibre
bundles,andin which thearrows <<preserve>>the(collectionsof) forms.

Before we can state the classificationof the 8-inequivalentextensionsover

M, we needa few comments.Let 13 be any closed 1-form on M and let {U,} be a
cover as in §4A, then on U, there exists a function F, such that dF, = 13. It

follows that F~— F1 = is constanton U1 fl U1 henceis a 1-cocyclewith values

in K. It is easy to showthat the cohomologyclass[‘y] of the 1-cocycle‘y depends
only upon the cohomology class [13]of 19 in H

1dJ~(M,K) (the map [19] -~ [‘y] is

the equivalenceH1dR(M,R)-÷H1~(M,K), seealso remark4.1).When we project

the cocycle 7to KID, wegeta cocycleir’y, henceaninducedmap ir :H’c(M,lR)_*

H~(M,KID). Finally we denoteby 00 the set of closed I-formsin 0, by
[0~ I the image of 00 in H’~(M,K) and by [0~ ‘D the imageof [0~] underir in
H’c(M, KID).

THEOREM 4.10. The 0-inequivalentpossibilities for the principal KID bundle

with connection(V, a + lr*0) over (M LI + dO)are classifiedby: H1~J(M,KID)
mod

Proof Suppose(Y, a) over (M, w) is constructed with solutions 19. andf~,to
(4.1) and (V’, a’) over (M, LI’) with andf

1 (with LI’ = LI + dt9 for some13 in
0 and with the constraintthat a,1~anda1ft shouldbein D 2 Per(LI) = Per(LI’)),
then the transition functions betweentwo local chartsare given by g.1 = irf~for

(Y~a) andbyg~1= rrf, for(V’,a’).
Since U, is contractible,all closed1-formsareexact,hencethereexist functions

F, on U, suchthat ~9 = 13, + 19 + dF,. SinceU~n U1 is contractible thereexist
constantsc11 suchthat f1 = 4 + F, — F, + Cq~and the constraint~ ~ E D

translatesas ~ c)j/k E D, which is equivalentto irc beinga 1-co-cyclewith values
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in KID. In the constructionof the cohomologyclass[ir c] we havetwo degrees
of freedom: we can modify the functionsF, with a constantb,, which changes

the l-cochain c with the coboundary~b, hencethe cohomologyclassof the 1-
cocycle irc is not changed.In the secondplace, we can modify the choice of
19 E 8 by anelement~o E 80 whichmodifiesthe functionsF, with the functions
F, (associatedto the closed1-form on M (seeabove)),henceirc is modified

by ir’y (7,~= F, — F1, hence6-y = 0), so the imageof [ire] in H’C(M, RID) mod
[Oo}~is independentof the possiblechoicesin the constructionof the cochain
c. It follows that if we classify all bundles(V’, a’) relativeto (V. a) then we have
constructeda mapping from the 8-inequivalentbundles to H’~(M, KiD) mod

[0~ ‘D’ which is surjectiveas canbeverified easily.
Now suppose‘p is anequivalencebetween(V.a) and (V’, a’); it follows that on

U1 ‘p is givenby ‘p(m, x) = (m, x + ‘p1(m)) for somefunction ‘p~: LT,—* RID. Since

U, is contractible(hence simply connected)there exist functions 4,~: U, -+ K
suchthat ir4,, =‘p, From the equation‘p*a’ = a + 19” for some19” E 0 onededu-
cesin the first place that 19” = 19 + with E 80 and 19 E 8 as usedin the
constructionof the classifying cocycleire. In the secondplaceone deducesthat

= 19. + 19 + i9~— d4,,, from which onededucesthat F, + — F, is constant
(dF, = When we nw -apply the transition functions betweentwo local

trivialisations U, x KID and U~,x KID we find that g~,= g1, + ‘p~— ‘p~which
implies that f1 = + — 4,, + d,~for some constantd.1 E D. Combiningall
these facts we find that the cohomologyclass [irc] in H’~(M,K/D) is the same

as the cohomology class of [iry] determinedby ~ E 80, showingthat two
equivalent bundles determinethe sameelementin H’~(M,KID) mod [8~ ]~.
Reversingthis argumentoneseesthat two bundleswhich determinethe same
elementin H’C(M, KID) mod [8~ ]D are equivalent,which proves the propo-

sition. QED

Remark4.11. As is known the CechcohomologygroupH’C(M, A) is isomorphic

to thegroupHom(ir1(M)-~ A) of homomorphismsfrom thefirst homotopygroup
of M into A. From this it follows that if M is simply connectedthen all possible
bundles(V. a) areequivalent.

Remark4.12. In the classificationof 8-inequivalentbundleswe canconsiderthe

two extremes:0 = {0} and0 = all 1-forms. Whenweconsider0 = {0}, we consi-
der the classificationof the principal A bundles(Y, a) overM suchthat da =

theseare classifiedby H’C(M, KID). On the otherextreme,when we consider
0 = all 1-formsweare obviouslynotinterestedin the specificchoiceof w as long

as the cohomology class[LI] remainsconstant.Moreover,in choosingall I-forms,
we also disregardthe connectiona on V: we are only interestedin the different



CENTRAL EXTENSIONS AND PHYSICS 227

principal KID bundles V over M which can be constructedby the method of

§4B. To prove this statement,supposethat V and V’ are two principal KID
bundlesover M constructedby the method of § 4B (for two closed2-forms in

the cohomology class [w]) and suppose‘p is an equivalenceof principal fibre
bundles over M betweenV and Y’. If a is the connectionon V and a’ is the
connectionon V’ as constructedin §4B, then p*a’ is a connectionon V which
satisfiesd’p*a E [w]. It is easyto show that the I-form lp*cx’ — a on V is the pull

backof a 1-form on M (it is zero on tangentvectorson Yin the directionof the
fibre and its exterior derivativeis the pull backof a 2-form on M), hence‘p*a’ =

= a + lr*19, which shows that (V. a) and (V’, cx’) are 0-equivalentfor 8 = all
1-forms.

We cansummarisethe abovediscussionby the statementthat the inequivalent
principal KID bundles V over M, which can be constructedby the method of
§4B, regardlessof the connectionform andregardlessof the specific choiceof
LI in [wJ, are classifiedby H’C(M, RID) mod1rH1~(M,K). If D =~[0}, thenthis

statementreducesto the fact that thereis up to equivalenceonly onesuchbundle.
If D Z then we canuse the long exactsequencein cohomologyassociatedto

the shortexactsequenceof abeliá.ngroups0 -+ D -+ K -~ KID —*0 to showthat this
quotientis equivalentto the imageof H1c(M, KID) in H2c(M, D), which in turn
is equal to the kernelof the mapH2C(M, D) -+H2~(M,K) (specialistsin algebraic

topologywill recognisethis as the kernelof themap H2C(M, ~) -+ Hom(H
2(M,~),

7L)whereH2 isthe homologygroup). This resultconnectscohomologywith values
in a constantsheaf (the Cech cohomologyH~(M, A)) and cohomology with

valuesin a sheafof germsof smoothfunctions (whichwewill denoteby H(M, A,)).
The long exact sequencein H(M, A,) associatedto the abovementionedshort

exact sequence,togetherwith the fact that H’(M, K,) andH
2(M, K,) are zero

(a partitionof unity argument,see[Hi]) showsthatH’(M, (KID),) andH2(M, D,)
are isomorphic. Now H’(M, (KID),) classifies all inequivalent principal KID
bundles V overM (the transition functionsg

11 of §4B determinean elementof
H’(M, (KID),)) andH

2(M, D,) = H2C(M, D) (becausesmoothfunctions to the

discrete set D are necessarily (locally) constant), so indeed the image of
H’c(M, KID) in H2c(M, D) classifiesinequivalentprincipal KID fibre bundles
overM.

Remark4.13. It is possiblethat V is topologically trivial but not trivial as<<bundle

with connection>>(in thestrict sensewith 8 = {0}) as canbeseenin the example

M = S’ (all 2-formsare zerohenceexacthenceclosed)wheretheabove construc-

tion always givesa topologically trivial bundle(seethenextproposition)although

the {0}-inequivalent <<bundleswith connection>> are classifiedby H1(S1, RID)
KID.
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PROPOSITION4.14. (a) (V. a) is topologically trivial =* w is exact ~: Per(co)=
= {0}; (b) ifD = { 0} then (V, cx) is topologicallytrivial.

Proof (i) If V is trivial then thereexistsa global (smooth!)sections : M —* V.
Sincea is a global I-form on V, s*cx is a global 1-form on M and ds*a= s’~’dcx =

= s*lr*w = w, proving thatLI is exact.

(ii) If w is exact it follows directly from the definition of Per(w) that it
equals{0}.

(üi) SupposePer(w) = {0}, andlet i9~and4 be as in (4.1). Let p1 be aparti-
tion of unity subordinateto the cover {U,}, then thelocal 1-forms, 19’, = 19, +

+ ~k d(pk fk,) are well definedon and they coincideon the intersections
U, n U, thus defining a global 1-form 19’ which obviously satisfiesdi9’ = w.

(iv) SupposeD = {0}, we want to show that Y is topologically trivial. Let p,

be a partition of unity subordinateto the cover { U, }, thenapplying proposition
4.5 it follows that the set of local sectionss,(m) = ~kpk(m) fk,(m), given as

functions from U~to K, definesa global smoothsection,which provesthat V
is topologicallytrivial. QED

Remark 4.15. Part (b) of the above proposition is a partial converse to the
implication V trivial w exact (if D = { 0 } then,sinceit containsPer(LI), LI is

exact by part (a)). That in general the implication w exact V trivial is not
true can be seen<<easily>> by the following example.The real projectiveplane
fl)

2(JR) is the quotientof the 2-sphereS2 with respectto theactionof thegroup
{±id} Z/2Z seenas transformationsof lR3 which leaveS2 invariant. V = ~2 x

x S1 with the canonicalprojection on the first coordinateandthe 1-form cx =

(x the cyclic coordinateon S1) is a principal S’ bundlewith connectionoverS2

andcurvatureform w = da = 0. On V acts thegroup (id, r} with r(u, x) = (— u,
x + ir), i.e. r is the reflection (with respectto the origin) in both coordinates.
Oneeasily verifies that the quotientV’ of V with respect to this group is a prin-
cipalS’ bundleover IP2(IR) and that the connectionform cx descendsto a con-
nection form cx’ on V’, transforming(V’, a’) into a principal U(1) bundlewith
connectionover lP2 (K) with dcx’ = 0. We claim that this bundleis not trivial,
so supposeit is trivial.

1P2(K) can be thought of as the upperhemisphereof S2 with its boundary

where oppositepoints on the boundaryhaveto beidentified. If V’ is trivial, it

has a global smooth section andsuch a global section canbe identified with a

function f from the upperhemisphereto the circle S1 with the condition that

thevaluesof oppositeboundarypointsare oppositeon S1 (adirect consequence
of the constructionof Y’). Now theupperhemisphereis thefull discwith boun-

dary S1 and the condition on f can be translatedas <<the restriction off to the
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boundaryS’ of the disc is a function with oddwinding number>>.Thisis a clear
contradiction with the fact that f is definedon the whole disc which implies that

the restriction to the boundary has winding number zero. Hencethe initial as-

sumption has to be false, implying that V’ is not a trivial principal fibre bundle

(seealsoexample5.12).

Remark4.16. One canshowthat if the first homology groupwith valuesin Z,

H
1(M, Z), is without torsion, then the classifying quotient H’C(M, KID) mod

7rH’~(M, K) equals{0}. In such a casewe havethe equivalence(V, cx) trivial

w exact, becauseamong the possibilities for theextensionsis the trivial bundle

andtheclassificationtells us that thereis only oneequivalenceclassof extensions.

4D. Lifling infinitesimal symmefries

Relatedto thequestionof theexistenceof thebundle VoverM is thequestion

aboutinfinitesimal symmetries:supposethe vector field X on M is an infinite-

simal symmetry of the pair (M, w), i.e. the Lie derivativeof LI with respectto X

is zero:L(X) w = 0, or in other words: the flow ‘p,. of X leavesw invariant, i.e.

= w. Question: does thereexist a vector field X’ on V suchthat ir*X’ = X

andX’ is an infinitesimal symmetry of (Y, a), i.e. L(X’)cx = 0?

PROPOSITION4.17. SuchX’ exists if and only if thereexistsa functionf on M
satisfying i(X)w + df = 0 (i.e. i(X)LI is exact);if X’ exists,it is uniquelydeter-
minedby thisfunctionf, a functionwhichalsosatisfiesir*f= a(X’).

Proof SupposeX’ exists,thenL(X’)a = 0 andir*X’ = X whichimply:

0 = i(X’) dcx + d(a(X’)) = lr*(i(X)w) + d(a(X’)).

From this equation one immediately deducesthat a(X’) is the pull back of a

function f on M andhencerr*(i(X)w + df) = 0, implying the only if part of the

proposition becauselr* is injective. On the other hand, if i(X)w is exact, say

i(X)LI + df = 0, then we can define a vector field X’ on the local chart

U, x KID by

X’ = X + (f— 19.(X)) alax,.

Usingthelocal expressionfor cx : a = lr*19 + dx, oneshowsthatX’ is on U, xKID
uniquely determinedby the equationsir*X’ = X anda(X’) = lr*f. Sincethese

equationsareglobal equationsit follows that X’ is a globally definedvector field

satisfying theseequations.Finally: L(X’)cx = i(X’) dcx + d(cx(X’)) = ir*(i(X)w +

+df)=0.QED
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Now supposeG is a Lie group which is a symmetry group (on the left) of

(M, LI), i.e. the left action ‘1’ : G xM -.÷M(definition 3.14) satisfiescI)(g)*LI = LI

for all g. Sinceall 4(g) leaveLI invariant,it follows thateachfundamentalvector
field XM (whoseflow is given by 1(exp(Xt))) is an infinitesimal symmetry of

(M, LI).

DEFINITION 4.18. A momentummappingJ for theaction of a synunetrygroup

G on (M, LI) is a linear map from the Lie algebraof G to smoothfunctionson M
(i.e. if X is a left invariantvector field on G thenJ~.is a function onM) suchthat:

(4.3) i(XM)LI + dJ~= 0.

PROPOSITION 4.19. A momentummapping exists iff each fundamentalvector
fieldXM can be lifted to an infinitesimalsymmetryof(Y, a).

Proof The only if part follows from the definition of momentummappingand

proposition 4.1 7. Conversely,if each fundamentalvector field can be lifted to an

infinitesimal symmetry of (V. a), then by proposition 4.17 for a basisof theLie
algebrathereexist functions satisfying (4.3); extendingthis map to thewhole of

the Lie algebraby linearity we obtain a momentummapping.QED .

Remark4.20. The actionof RID on V is a symmetrygroup of (V, cx); the fun-

damentalvector field associatedto the left invariantvector field on KID is

the vector field which is expressedon eachlocal chart U, x KID as ~. Oneeasily

verifies that the freedom in the lift of an infinitesimal symmetryX on (M, LI) to

an infinitesimal symmetryX’ on (Y, cx) is just a multiple of thevector field

this freedom correspondsexactly to the freedom in the function f satisfying

i(X)LI + df = 0 : f is determinedup to an additiveconstant(we alwaysassume
that M is connected!).It follows that the freedomin a momentummapping(if it

exists!) is an element~ of thedual Lie algebra,i.e. onemayaddto eachfunction

theconstantp(X).

Remark4.21. Let us denoteby symm(Y, a) theLie algebraof infinitesimalsym-

metries of a (a Lie algebrabecauseL([X, VI) = [L(X),L(Y)]) and denoteby

symm’(M, LI) the Lie algebraof infinitesimal symmetriesof LI which satisfy the

lifting condition of proposition 4.17 (a Lie algebra becausei(X)LI + df =

= 0 A i(Y)LI + dg = 0 ~ i([X, Y})LI + dw(X, Y) = 0). From dL(X)a = L(X)
7r*LI = 0 for X E symrn(Y, a) we deducethat 7r*X is a well defined elementof

symm’(M, LI); it follows from 4.17 and 4.20 that ir~is a surjectiveLie algebra

morphismwith a 1-dimensionalkernel consistingof multiples of the fundamental
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vector field associatedto the structuregroupof V. Moreover,thevector field

is an elementof the centerof symm(V, a) hencesymm(V, a) is a (I-dimen-
sional) centralextensionof symm’(M, LI). This is one of the reasonswhy we call

(V. cx) acentralextensionof (M, w).

5. APPLICATIONS

In this section we will discuss two different applicationsof central extensions

of manifolds, the first one to answerthe questionposedat the end of §3 con-

cerning centralextensionsof a Lie groupassociatedto central extensionsof the

correspondingLie algebra.The secondapplicationis to classicalmechanicswhere

it yields (up to a minor difference)thewell knownprequantizationbundle overa

symplectic manifold. The difference is that no quantizationcondition is neces-

sary, only the condition Per(w) discrete; the connection with the usual pre-

quantizationconstructionis discussed.We finish this sectionwith an application
which is a combination of the previoustwo: we duplicatediagram(2.3) for clas-

sical mechanicsandwe give anexplicit (easy)way to define thecentralextension

G’ occurringin the classicalmechanicsdiagram.

5A. Lie group extensionsassociatedto Lie algebra extensions

In this section we will concentrateon the casep = 1, i.e. we will consider
central extensionsof a Lie algebra g by K andwe will considercentral exten-

sions of a correspondingLie group G by IRID with D a discretesubgroupof K.

The generalcaseis arelativelystraightforwardgeneralizationof the 1 -dimensional

caseso we leaveit to thereader.

SupposeG is a Lie groupwith associatedLie algebrag andlet g’ be a 1 -dimen-

sional central extension of g determinedby the algebra2-cocycle LI seenasleft

invariant closed2-form on G (remark 3.9). As we haveseenin proposition 3.16

if G’ is a central extension of G by JR,/D for which g’ is theassociatedextension

of g, then G’ is a principal fibre bundle with connectiona over G such that

dcx = w (at least such an w can be foundin thecohomologyclassdeterminedby
theextension n’). Proposition4.7 then tells us that anecessarycondition for the

existenceof G’ is that D containsPer(w); sinceall groupsKID are equivalentfor

D infinite discrete, it follows that a necessarycondition for the existenceof G’

is that Per(LI) is discrete. However, for the moment this is not asufficient condi-

tion becauseif Per(LI) is containedin D then we havea principal fibre bundle

with connection(Y, a) over G, but a principal fibre bundleis not yeta Lie group.
What we needis a way to seewhether V canbe equippedwith thestructureof a

Lie group such that the projection ir : V -* G is a Lie group homomorphism.To
tackle this problem we start with somegeneralremarksandterminology on Lie

groups.
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TERMINOLOGY 5.1. The gradedalgebra of left invariant forms on a Lie groupis

called the Maurer Cartan algebra on C, its elementsare called Maurer Cartan

forms. If 131, . . ., (3” are n left invariant 1-forms on G which form a basis of the
dual of the Lie algebra~ of G, then theMaurer Cartanalgebrais generatedby

these 1-forms, i.e. eachMaurer Cartank-form can be written asa linear combi-

nation of the forms(3tIA. . .A(3tk(l ~t
1 <t2 ~(. . ~ ~n).

Now let X1, . . ., X,, be n left invariant vectorfields on a Lie G forming a

basis of its Lie algebra~ and c,J’~constantssuchthat [X1, X,] = cjf”Xk. If we

denoteby 131 .,B”thenleftinvariant I-forms on G dual to thebasisX1, ..., X,,,

thenthese1-formssatisfy theequations:

(5.1) d(3k = — — c1!~3’A/3I. (full summation)
21

From theseequationsit follows that theLie algebrag andthegradeddifferential

algebraof Maurer Cartanforms togetherwith the exterior derivativearecomple-

tely determinedby equations(5.1). Onenow canask the converse:doesasetof

1-forms on a manifold satisfying equations(5.1) determinea Lie groupwith Lie

algebrag?

DEFINITION 5.2. Let g be a Lie algebra,X1, ..., X,, a basisof g andc.1
1’ constants

such that [X
1, X1] = cjj”Xk. Let M be a manifold andr’ r” 1-forms on M,

thenM is calleda g-manifoldif thefollowing two conditionsaresatisfied:

(i) at eachpoint m ofM : r
1, ..., r” is a basisof T*mM~

(ii) d?k _—_..~-c
1J’r’i\r1.

A diffeomorphismof M which leavesthe r’ invariant is calleda Maurer Cartan

automorphismof the 9-manifold M (abbreviatedas MC automorphism).TheMC
automorphismsof a g-manifold obviously constitute a group calledAutMc(M)
and the g-manifold M is called a completeg-manifold if this groupactstransi-

tively onM.

PROPOSITION 53. A g-manifoldM can be giventhestructure ofa Lie groupwith
Lie algebra g for which the r~are left invariant 1-forms iff it is a completeg-
manifold.

Proof (sketch). The only if part is obvioussince if M is aLie group, then all left
translationsareMC autornorphismshenceAutMc(M)acts transitively.

To provetheif part we makethe following comments:denoteby r’ (i = I n)

the 1 -forms on M which establishM asa g-manifoldanddenoteby pr1 : Mx M -+M
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the projection on thej-th component(j = 1, 2). The equationspr1 ~ = pr2 *Tl

(i = 1 n) define a foliation onM xM of dimensionn = dimM (it definesan

involutive distribution on M x M henceby Frobenius’ theoremit is integrable)

and we have two obvious types of integral manifolds: (i) the diagonal
{(m, m) m EM} and (ii) thegraphofanMC automorphismg{(m, gm) m EM}.

From the uniquenessof integral manifolds we concludethat if theMC auto-

morphismg has a fixed point, then it must be the identity, i.e. AutMC(M) acts

without fixed points. This shows that if AutMc(M) actstransitively as well, we

can establisha bijection betweenAut Mc(M) and M as follows: choosea point

m0 in M then ~ -+ 0(m0) is a bijection. This defmesa groupstructureon M by:

01(m0) . cb2(m0) = 01(02(’n0)), (0(m0))
1 = 0’(m

0) and identity element
m0. Now let 0(m0) be any point of M, then left translationby 0(m0)isjust the
MC automorphismçb hencethe r’ areleft invariant 1-forms. It remainsto show
that this groupaction is smooth;as a technical <<detail>> this is left to the reader.

QED .

We now go back to our original problem: is it possibleto equip the bundle

with connection(V. a) with the structureof a Lie groupsuchthat ir : V -+ C is a

Lie grouphomomorphism?Thereforelet (31 (3” be a basisof theleft invariant
1-forms on C, then cx, lr*13

1 lr*13h1 are 1-forms on V andmoreover,since

dcx = LI is aleft invariant2-form on C, it follows (usingformulas(3.5) and(3.7))

that V is a g’-manifold. HenceV is a Lie groupiff it is a completeg’-manifold,

i.e. if AutMc(V)actstransitively.

As a first stepin proving the transitiveaction we note that theactionof KID

on Y leavesthe 1-form cx invariantand, sinceits orbitsarethe fibres, it alsoleaves
the ir*13i invariant, so KID is containedin AutMC(V)and any two points in one

fibre of V canbejoined by anMC automorphism.

If we could lift eachleft translationLg on C (g E C), i.e. anMC automorphism
of the g-manifold C, to anMC automorphismAg of V (a

9’-manifold) satisfying

1TAg = Lgir~thenwe would know that Y is complete,becauseif y andy’ aretwo

arbitrary elementsof V then ir(y) = Ii and ir(y’) = h’ are two elementsof C
which can be joined by a left translationh’ = Lgh~hencey’ andAgY are two

elementsof the samefibre which can be joined by an MC automorphism,hence

y andy’ can be joined by anMC automorphism. Finally we note that the con-

dition Ag E AutMc(Y) reducesto the equationAg*a = a becauseA5*ir*13
1 =

= ir*Lg*13~ = lr*(3I. With these preliminaries we can now state and prove the
necessaryand sufficient condition for the existence of a Lie groupextension

associatedto a Lie algebraextension.

THEOREM 5.4. Let C be a Lie groupwith Lie algebra g andsupposeLI is a Lie
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algebra 2-cocyclewith valuesin IR, i.e. [w] EH2 lidR(M, I~)~H2d(9,1R). Then

thereexistsa Lie groupcentral extensionG’ of G by IR/D associatedto theLie
algebra extensiong’ of g by JR (definedby w) if andonly if thefollowing two
conditionsaresatisfied:

(i) Per(w)C D discretein JR

(ii) there exists a momentummappingfor the left action of G on (G, ca).

If theseconditionsare satisfiedthen the inequivalentgroupextensions(definition

3.1) are classifiedby H1C(G, JR/D)/[�)o]D with E) = all left invariant 1-forms
(definition 4.8)(seealso [Sh] and [Ho]).

Proof(only ifpart). Letus first assumethatG’ existsandlet abe the connection
form on G’ definedin §3C (a is a left invariant 1-form on G’ dual to the center

IR/D). According to proposition4.7 Per(w)is containedin D. Now for anyX E

the fundamentalvector field XG associatedto the left actionof G on itself is the
right invariantvectorfield XT determinedby the vectorXe at theidentity (where
we identified 9 with TeG)• Since w is left invariant this vector field XF is an

infinitesimal symmetryof (G, w). Let X’7 be any right invariantvector field on
G’ satisfyinglr*XIT = xr (suchX’r exist:choosealift abovethe identity e’ of G’
and extend to a right invariant vectorfield on G’) then X~is an infinitesimal

symmetryof (G’, a) becauseais left invariant.According to proposition4.19 we
may concludethat thereexistsa momentummappingasspecifiedin the theorem.

qed

(if part). According to the discussionprecedingthis theoremwe only haveto

show the existence(for eachg E G) of a diffeomorphismAg on ‘ satisfying
7rAg = Lg7r and Ag*a = a when (G’, a) is a principal fibre bundle with con-
nection associatedto (G, w). To do this we proceedas follows: Let X E g and

the function on G determinedby the momentummappingfor the left action
of G on itself. It follows from proposition4.17 that determinesa unique

vector field X’ on G’ such that L(X’)a = 0 (i.e. an infinitesimal symmetry of
(G’, a)), 7r~X’= XG = XT and a(X’) = lr*JX. From the fact that the vector
field XT is completeon G one can deducethat the vectorfield X’ is completeon
G’, henceits flow is determinedfor all times t and = a. BecauseX’
projectson X, its flow projectson the flow of X which is left multiplication by
exp(Xt). From this we deducethat we havefound the mappingsAexp(Xt) = P~

we were looking for. Sinceexp is a diffeomorphismfrom a neighbourhoodof 0

to a neighbourhoodof the identity andsinceevery neighbourhoodof theidentity
generatesthe whole group (C is connected)we can find lifts Ag for all g in G,

provingtheif part. qed
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(Classificationpart). If we canshow that two bundleswith connection(C’, a)

and (C”, cx’) over (G, <~)are 8-equivalent in the senseof definition 4.8 with 8
the collection of all left invariant 1-forms on C if and only if the Lie group
extensionsC’ and G” are equivalentextensions,then we arefinished becauseby
theorem4.10we know the classificationof inequivalentbundleswith connection

to begivenby H’(G, KID)I[80 ‘D•

Therefore suppose4’ : C’ -+ G” is an equivalenceof Lie groupextensions,

then cx and 4)*a’ differ by the pull back of some left invariant 1-form on C
becausethey are both left invariant 1-formson C’ which are dual to algebraof
KID~Since4) is~aIsoan &quivalence of. bundles,it follows that C’ and C” are

8-equivalentbundles.On the otherhand,suppose4) : C’ -+ C” is an equivalence
of bundles with connectionandboth C’ and C” are Lie groupextensionsof C

definedby the cohomologyclassof w in H~,,dR(G,K). Since theaction of KID
on C” is an equivalenceof C” to itself, we canassumethat 4)(e’) = e”, i.e. CF

maps the identity of C’ on the identity of C “. Now 4)* mapsthe MaurerCartan

algebra of left invariant forms on G” onto the Maurer Cartanalgebra of left
invariant forms on C’ becauseir”CF = 71’ (where it’ is the canonicalprojection
from C’ on C and it” from G” on C) andbecausecx and4,*cx’ differ by thepull
back of a left invariant form on G (we havechosenthe collection8 as all left

invariant 1-forms on C). Onenow verifieseasily that thesetwo conditions(MC
algebra-* MC algebraand $(e’) = e”) imply that CF is a grouphomomorphism,
hence the extensionsG’ and C” are equivalent Lie group extensions,proving
that inequivalenceof Lie group extensionsis the sameas 8-inequivalenceof

bundleswith connection.QED

Remark5.5. ([vE,3]). Theorem 5.4remainsvalid if one replaces<<(finite dimen-

sional)Lie group>> by <<Banach-Liegroup>>. On theotherhand,a thoroughanalysis
of finite dimensionalLie groups(which will not be given here)shows that there
exist no centralextensionsof finite dimensionalLie groupsfor which the group
of periods is infinite (Per(w) ~#(0)), hencefor finite dimensionalLie groupsa
slightly strongertheoremholds: condition(i) canbe replacedby (i’) Per(w) = (0)

(or by w is exactas 2-formon C).

Remark5.6. The diffeomorphism Aexp(Xt) of C’ occurring in the proof above
can be computedexplicitly in local coordinatesfor small t : let U x IRID be a

local chartof C’ on which cx is expressedas 7r’~i9+ dx for somepotential i~of w

(~not necessarilyleft invariant). On this chart the lift X’ is givenby X’ = X
T +

+ — ~(X~)) ~ (seeproposition4.17) hencefor smallt the flow Aexp(Xt) of
X’ is given by
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Ae~p(x~(g~x) = (exP(Xt) g, x + f ~ — 19(Xr))(exp(Xs)g)

from which one can easily see that X’ is indeeda completevector field (N.B.

= xr is the right invariantvector field associatedto X E g!). In generalthe

function p(exp(Xt), g) = — i9(XT))(exp(Xs) g) ds can not be extendedto

the whole of G x C; however, if G is simply connected,it can be extendedto
G x G as we will show.

If G is a simply connectedLie groupthen a theoremof Hopf tells us thatnot

only the first de Rham cohomology group H’dR(G, K) is zero, but also

H2dR(G, K) = {0} (the ingredientsof theproof aretheKunnethformula andthe

groupstructure).It follows in the first placethat for anyalgebraextensiondefined
by LI the conditions of theorem5.4 aresatisfied:H2 ={0} implies that LI is exact

hencePer(LI) = {0} andH1 = { 0 } implies that all 1-formsi(XT)LI areexactimply-

ing the existenceof a momentummap.In thesecondplace it follows that if LI

is a closed (left invariant) 2-form on C then there existsa I-form ~9(not neces-

sarily left invariant) such that d19 = LI. From the constructionof the principal

fibre bundlewith connection(C’, a) in §4C we know that C’ is the trivial bundle

C’ = C x KID andthat-ais given by a = 19 + dx (up to equivalence).Now let

g E C then thereexistsafunction .1 on C suchthat: t9 _Lg*19= dJ~(H’dR(G, K) =

= 0 ); it follows that themap Ag on C x KID definedby:

(5.2) Ag(h~x) = (gh, x +fg(h))

leavesthe 1-form a invariant, henceis the lift one looked for in the proof of

theorem5.4. Moreover, it is easyto show that the function Jj. definedbyJ~—

— 19(Xfl = d
1 rof~~~(xt)satisfiestheequationi(Xr)LI + dJj~.= 0, hencediffers

only a constantfrom themomentumfunctionJ~.Thisshowstherelationbetween

the two methodsto lift left translationsLg on C to Ag on C’ (i.e. themethodin

theproof of theorem5.4 andformula (5.2)).

COROLLARY 5.7. If G isa simply connectedLie group, then themap ~ definedin
construction 3.1 7, ~ : H

2,.g,,(G~KID) -+ H~~(g,K) is an isomorphism,and the

Lie groupcentral extensionsof C by KID are classifiedby eitherH2
01(g, K) or

H
2~,(G,KID).

Proof. As we have seenabove,if C is simply connected,then eachclosedleft

invariant 2-form satisfiestile conditions of theorem5.4, hencefor every algebra

extension there exists a Lie group extension.Moreover,the classificationpart

shows that thereexists up to equivalenceonly oneextension,showing that the
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Lie group central extensionsof C by KID are classified by H~1(g,K). On the

other hand,if C’ is such a central extensionof C then by proposition 4.14 it is
topologically a trivial bundle,hencethereexistsaglobalsmoothsection,showing

that C’ determinesa cohomology classin H
2

1 g,.(G~KID), which in turn shows

that the map A is surjective. Since each algebra extension determinesup to
equivalenceonly onegroupextension,A is alsoinjective.QED

COROLLARY 5.8. If G is semisimple, then thecentral extensionsof C by KID

are classifiedbyH’c(C, KID).

Proof C semi simple implies that its Lie algebrag is semi simple. For semisim-

ple Lie algebra’s one can show that H’d(9, K) = H
2ai(

9~K) = {0} (seee.g.

[Gu&St, §52]). From H
2~(g,K) = (0) one deducesthat there exists (up to

equivalence)only one algebraextension.FromH’ai(9~K) = {0} onededucesthat

eachclosedleft invariant 1-form on G is theexterior derivativeof a left invariant

0-form, henceeach closedleft invariant 1-form is exact, hencethe set

occurringin theorem5.4 is zero. According to theorem5.4 this shows that the

inequivalent group extensionsassociatedto the unique algebra extension are

classifiedby H1c(C, KID). QED •

COROLLARY 5.9. If C is a simply connected,semi simple Lie group, then the
only Lie groupcentralextensionofC by KID is the trivial extension. .

Example5.10. One of the easiestexamplesis the group 1R2 with addition:it is

an abelian simply connected Lie group. However, its Lie algebra cohomology

(left invariant de Rham cohomology)is not trivial: left invariant functions are

constants,left invariant 1-forms are of the form ~ dx + 17 dy (where ~, 17 are
constantsand x, y denotethe canonical coordinateson K2) andleft invariant

2-forms are of the form ö dx ‘~dy (ö a constant).It follows that the exterior
derivative of all left invariantformsis zero,henceH2

11 dR(C, K) K anddx n dy

is ageneratorof this cohomologygroup. If we chooseD = {0), thentheextension

C’ (associatedto the Lie algebraextension definedby the Lie algebra2-cocycle

dx A dy) is topologically1R
3 with connectioncx = ~ (x dj’ — y dx) + dt, hence

with groupstructure:

(x, y, t). (x’,y’, t’)= x +x’,i’ +y’,t + t’ + — (x’y—xy’)
2

wherewe have chosen(0, 0, 0) asthe identity (thepoint m
0 of proposition5.3).

Using the sections(x, y) = (x, y, 0) we geta 2-cocycle~ whichyieldsafterappli-

cation of formula 3.8 exactly the defining 2-cocycledx A d.i’ (not only onein the



238 G.M. TUYNMAN, W.AJ.J.WIEGERINCK

samecohomologyclass).
Whenwe chooseD = dZ for someelementd E R, then the Lie groupexten-

sion of K2 by KID can be obtainedfrom the aboveoneby taking the quotient
with respectto thenormalsubgroup(0) x {o} x D. Although thereshouldbe only
one Heisenberggroup, all theseextensionsare calledthe Heisenberggroup(ma-

thematiciansusuallycall theextensionwith d = 0 the Heisenberggroup,physicists
usuallycall theextensionwith d = 2ir theHeisenberggroup).

Example5.11. The abelian Lie group C = (IRIZ) x K togetherwith the left

invariant exact 2-form dx A dy is a slight modification of the previousexample.

However, C is not simply connectedandmoreover,thereexistsno momentum

mappingfor the left action of C on (C, dx A dy) : the fundamentalvectorfields
associatedto the left actionare linear combinationsof the vectorfields and

a,, and then: i(a,,) dx A dy = — dx which is closedbut not exact (x is a cyclic
coordinate).Hencetheredoesnotexista Lie groupextensionC’ associatedto the
Lie algebraextensiondefinedby dx A dy (one canverify by hand that a bundle

with connection(Y, a) asconstructedin §4 cannot be given a groupstructure
suchthat theprojection is ahomomorphism).

Example5.12. SU(2)isa semi simple, simply connectedLie group, henceby
corollary 5.9 the only Lie groupcentralextensionof SU(2)by KID is thetrivial

extensionSU(2)x KID.
The groupS0(3) is the quotientof SU(2)by the normalsubgroup(id, — id);

the Lie algebra of S0(3)is the same as for SU(2) so thereexistsonly one Lie

algebraextension(up to equivalence):the trivial extension.However,ir
1(SO(3))=

= Z/2Z = { id, — id) andhenceH’JSO(3), KID) Hom(Z127 -+ KID), which
classifies,accordingto corollary 5.8, the inequivalentgroupextensionsof 50(3)
by KID. Consequently,if D = {O} thereis only onegroupextension:the trivial
one; if D = dZ (with d E K\{0}) thereare two inequivalentLie groupextensions
of SO(3)by KID. Thesetwo extensionscanbeobtainedfrom thetrivialextension

SU(2) x JR/D of SU(2) by taking the quotientwith respectto thenormalsub-
groups {(id, 0), (— Id, 0)) (giving the trivial extension)and ((Id, 0), (— id, -~ d)}
(giving anon trivial extensionof S0(3) which will be discussedagainin example

5.29). -

Example5.13. The group SL(2, K) is semi simple but not simply connected:
topologically SL(2, K) JR

2 x S1, henceir
1(SL(2, K)) = 7L. It follows from

corollary 5.8 that the inequivalentLie group centralextensionsof SL(2, K) by
KID are classified by H

1~(SL(2,K), KID) Hom(~-+ KID) KID (for all
discreteD C K).
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SB. Pre-quantization

Prequantizationis a constructionwhich can be carriedoutwithin the frame-

work of classicalmechanics (or in symplectic geometry).The purposeof this
construction is to obtain a faithful representationof the Poisson algebra(as
vectorfields on a manifold). Such a representationof the Poissonalgebrarealises

a part of the canonical quantizationprogramof Dirac,i.e. constructinga faithful
representationof the Poissonalgebraas (essentiallyselladjoint) operatorson a

Hilbert spacei*0. In this sectionwe will elucidatethesestatements.

5.14. The Poisson algebraand the pre-quanlizationbundle:Theusual (modern)
formulation of classicalmechanicsis by meansof a symplecticmanifold (M, w)

called the phasespaceanda Hamilton function H : M -, JR generatingthe time

flow by means of the associatedhamiltonian vectorfield defined by the
equationi(~H)w+ dH = 0. The mapf -+ ~. from functionson M to vectorfields
on M is clearly a linear map. ThePoissonbracketof two functions{f, g} = ~fg

defmesthe structure of a Lie algebra (infinite dimensional)on the set of all
smooth functions on M which is calledthe Poissonalgebra.The commutatorof
vector fields definesa Lie algebrastructureon the set of all smoothvectorfields
on M andequippedwith theseLie algebrastructures,the mapf -+ is ahomo-

morphismof Lie algebras.However,this map (representation)is not injective: its

kernelconsistsof all constantfunctionsonM (whichis supposedto be connected).
The most natural way to obtain an injective representationof the Poisson

algebra (functions on M) out of the hamiltonian vectorfields is to apply the
constructionof §4. The idea is roughly as follows: themapf-+ ~ is a faithful
representationof the Poisson algebra modulo the kernel of this map and the
Poissonalgebrais a 1-dimensionalLie algebraextensionof this quotient,so one

only needsa way to representthis kernelinjectively. This canbe doneby adding
an extra coordinateto the manifold M andrepresentingthe constantfunctions
as constantvector fields in the new direction. The actualconstructionis a bit
more delicate:sincea symplecticform w is in particulara closed2-form onecan

apply the constructionof §4 to obtain a principal fibre bundle with connection
(Y, a) overM with dcx = w provided Per(w)is discrete.This putsa constrainton
the classof classicalsystemswhich can be treatedin this way (althoughit isnot
a quantizationcondition,seethe discussionbelow). If this conditionis satisfied,
then aninjective representationof thePoissonalgebraof functionsonM asvector

fields of V is an easy application of proposition 4.1 7: eachhamiltonian vector

field satisfiesthe equation~(~f)W + df = 0, so it definesa uniqueinfinitesimal

symmetry 17J~of (V. cx) satisfying ir*i~.= and a(17
1) = lr*f. Using the local

expressionfor as given in the proof of proposition4.17 it is an easy exercise
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to prove that the map f -~ ~ is an injective Lie algebrahomomorphism of the

Poisson algebra to the infinitesimal symmetries of (V. a). The bundle (V, cx)

over M is usually called the pre-quantization bundle over M of (M, w). The

resultsaresummarisedin thefollowing theorem.

THEOREM 5.15. Suppose(M, LI) is a symplecticmanifold with Poissonalgebra

~Iand suppose that there exists a bundle with connection (Y, cx) overM such
that dcx = LI, i.e. there exists a pre-quantization bundle V over M. Then we can
construct a faithful representationi~of ~?on V with the following properties:

= L (i~1)a = 0 cx(17f) = lr*f

(andremember: L(~f)w= 0 ~(~f)W + df= 0).

5.16. Quantization:When onespeaksin physicsaboutquantizationof a classical
system, one is looking for a Hubert space.~*°and for (selfadjoint) operators

0(f) on .~‘ representingclassicalobservablesf (i.e. f : M -+ K). According to a
remark of Dirac ([Di], p. 87) the ideal situation would be the situationin which
the mapf -* 0(f) is linear andmapsthe Poissonbracketto i timesthe commu-
tator of operators;more precisely, a map which satisfiesthe following conditions

[vH], [Go]:

(i) it is an K-linear map from- the Poissonalgebrato theoperatorson )~°which

satisfiesthe condition:h = [f~g]~ 0(h) = (hli) ~0(f), O(g)],

where [~]~is the Poisson bracketof functions,where [,] is the usualcom-
mutator of operatorsand where his Planck’s constanth divided by 2it (in

short it shouldbe a Lie algebrahomomorphismfor a certainalgebrastruc-

tureon the set of operatorson
(ii) the function constant 1 is mappedto the identity operator on ,~° and

(iii) .~$°is irreducible under the action of the images of a set of canonical

coordinates.

Apart from the fact that there doesnot always exist a set of global canonical

coordinateson an arbitrary symplectic manifold, we have the famousno-go
theoremof Van Hove [vH] which tells us that even in the caseof 1R

2” with its

canonicalsymplecticstructure,sucha map can not exist: onehasto drop oneof

the conditions. In quantization proceduresone usually relaxescondition (i) to:

it should be a Lie algebrahomomorphismfor a restricted classof observables.

We will not discussthis here;what we will do is constructa Hubertspace.7~and

a map from observablesto operatorswhich satisfy (i) and (ii) by meansof the

injective representationof the Poissonalgebraon vector fields on thepre-quanti-
zation bundle (V. a). This approachis thestartingpoint of thegeometricquanti-

zation procedure;geometricquantizationproceedsby constructing<<irreducible>>
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partsout of the Hilbert space)~“and defining the operatorson suchan irreduci-
ble part; it follows from Van Hove’s theoremthat in generalcondition (i) is no

longersatisfiedfor the classof all observables.

5.17. The Hilbert spaceand the quantizationcondition:The symplecticmanifold
(M, LI) carries a natural volume form: the Liouvile volume form � which is

(apart from some numerical constant) given by w” where2n denotesthe dimen-

sion of the symplecticmanifold M. With this volume form onecan definein a
canonicalway the filbert space .~° = L2~(M,�) of squareintegrable complex

valued functions on M with respectto the measuredefined by the volume form

�. Moreover, observablesf : M -* K, can be representedin an obvious way as

operatorson ~°. If we define the operator0(f) associatedto an observablef by

0(f) = (hIi)~,.then this map satisfies condition (i) above,but it doesnot satisfy

condition (ii): thehamiltonian vector fields of contantfunctions arezero,so the

operator0(1) associatedto theconstantfunction 1 is zero.

The obviousway out is to constructthe Hilbert space)r out of functionson
V: on V we also havea canonicalvolume elementc (abuseof notation: e also

denotes the Liouville volume elementon M) which is (againapartfrom some

numericalconstants)given by cx A (daY’ so we can definetheHilbert spaceL2~(V,

on which act the operators0(f) = (h/i)nf associatedto an observablef. The

operator 0(1) associatedto the constant function 1 is the operator (IVi)a~
wherex is the coordinateon the fibre KID of V. Weseethat this operatoris not

the identity on the whole of L2((Y, e), so we define )r to be the subspaceof

L2~(Y,e~on which it is. On a local chart U, x IRID the equation0(1)4 = 0 for

0EL2~(V,e)reducesto the equation:

(5.3) aO(m, x)Iax = (ilh)0(m, x) ~ q~(m,x) = 0(m)exp(ix/h).

This equationimmediatelygivesrise to two problems:if D = (0), thenintegration

of ~ 2 over the fibre K explodes(except when çb(m) = 0); so in that casethe

subspace.)~°ofL2~(Y,�) is (0); on the otherhand,if D = dZ (with dE IR\{0} a

generatorof D), then exp(ixlh) should be well defined on KID which implies
that exp(idlh) = I or in other words: d E h7L (where h is Planck’s constant).

The first problemis easyto solve:if D = (0), it implies(proposition4.14)that

the group of periods of LI is zero: Per(w) = (0), so thereis no problem when
we chooseD = d7L : Per(w) remainscontained in D. Thesecondproblemis more

serious: it posesa constraint on the symplectic form w because(V, cx) exists

only if Per(LI) is containedin D = d~,hencethe condition d Eh Z implies that

Per(LI) should be containedin h 7L. If this condition is satisfiedthen thesubspace

~° of L2~(V. e) on which the operator0(1) associatedto theconstantfunction I

acts as the identity is not trivial. An easyway to describethis filbert space)~
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is in termsof theaction of thestructuregroupKID on

(5.4) .~°= {Ø E L2
11(V, e) V a E JRID : ~(y + a) = 0(Y) exp(ialh)}.

In this way we haveconstructeda filbert spaceand operatorson it satisfying

the conditions (i) and (ii) mentionedabove.We have seen that the existenceof

the pre-quantizationbundle V is subject to the constraintPer(w) discreteand
that the supplementary condition (ii) yields the quantization condition

Per(LI) c h Z (it is called a quantizationcondition becauseit restricts the gene-
ratorof Per(LI) to a discretesubsetof K).

5.18. Relations with other prequantizationconstructions:We have called the

principal fibre bundle (Y, a) the pre-quantizationbundle over the symplectic
manifold (M, w) with a hyphenbetweenpre andquantizationto distinguish it

from the bundles constructedin the usual prequantizationprocedures.In lite-

rature one encounterstwo versions of prequantizationdue to J.-M. Souriau

[So,lJ and B. Kostant [Ko]; we will discuss the relations betweenthesetwo

versions and the version describedabove. The relation with Souriau’sversion is
very simple: he only considers the caseD equalto h Z, so the fibre of V is fixed

and one obtains the quantizationcondition that a generatorof Per(w) should
be a multiple of h. In our casewith D C hZ one can obtain a bundlewith fibre

lRIh ~ from the bundle with fibre KID by taking the quotientof V with respect
to theaction of thesubgrouph7L/D of KID on V; this is equivalentto saying that
one takesthe <<transition functions>>JT,. of §4B not moduloD but modulo h 7L.
It will be clear from formula (5.4) that there is a canonical unitary equivalence

betweenthe Hubertspaceof formula (5.4) with the <<arbitrary>> subgroupD and
the filbert spaceconstructedwith D = h Z, so with respectto the Hubertspaces

thereis no difference.It should be noted that the processof taking thequotient

of V with respectto the actionof the subgrouph 7LID of KID on V is called by

Souriauin [So, 1] <<quantizationby fusion>>.

To discussthe relation with Kostant’s version we needa small digressionon

associatedvector bundles. Let ~k (for k E IN) be the unitary representationof

R/dZ on ~f definedby Pk(x) = exp(— 2k7rixId) anddenoteby Lk the complex

line bundle over M associatedwith the principal fibre bundle (V, a) and the
representation~k (seee.g. [Pij]). The connectiona on V definesa connection

V on Lk and one can calculate (an easyexercise)that the curvature2-form of
theconnectionV is givenby:

curvature(V)= (— 2kirild) id(U~)LI.

Now one can show that thereexists a 1-1 correspondencebetweenthesectionsof

Lk and the functions 0 on Ysatisfying thecondition 0U’ +a)=Ø(y). exp(2kiriald).
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Comparingthis with formula 5.4 we seethat the filbert space .)~°defined in

formula 5.4 consistsof sectionsof the bundle Lk where the integerk is defined

by the equationd = kh. It follows that the curvatureof V is given by — i/hLI,

independent of the choice of d (which hasof courseto satisfy the <<equation>>:
Per(LI) C dZ C hZ). In Kostant’s approachonefocusesright away on a com-

plex line bundle L over M by asking: givena symplecticmanifold (M, LI) does

there exist a complex line bundle L overM with connection V such that its
curvatureis givenby: curv(V) = — iIhLI? The answeris given by A. Weil: a neces-

saryandsufficient condition is that LIIh determinesan integer cohomology class,

a condition which can also be statedas Per(w) containedin liZ. We see that

Kostant’s approachis more direct to the goal of determiningthe Hubert space,

whereasour approachis in two steps: first an injective representationof the
Poisson algebra and then the construction of the Hubert space. Apart from

theseminor differencesin approach,all threemethodsto obtain a filbert space

~°are equivalentas we haveseenabove.

Remark 5.19. So far we have said nothing about the (essential)self adjointness

of the operators0(f) = (hIi)~i1associatedto a classicalobservablef : M —~ K.
Sincer~.is an infinitesimal symmetry of (V, a), it follows that theLie derivative

of the volume form � on V in thedirectionof is zerowhich showsthat (hli)flf
is formally a symmetricoperatoron L

2~(V,e). Furthermore,if thevector field

is a completevector field, then its flow is a 1-parametergroupof diffeomor-

phismsof V which leave the volume form invariant, hencethey define a 1-para-

meterunitary groupof transformationsof L2~(V,e). By Stone’s theorem the

infinitesimal generatorof this unitary groupis a selfadjoint operatoron L2,
1(V, c),

showingthat if i~.is complete, then0(f) is (essentially)selfadjoint.

Example5.20. Let M = K
2?? andlet LI = d (p

1 dq’) be its standardsymplectic

form. M is simply connectedandw is exact,so (up to equivalence)thereexists
for eachdiscreteD only one bundle V : M x KID, with connectionform a =

= p. dq’ + dx. Calculatingfor f : M -+ K the associatedvector field ~. we find:

= (aflap1)alaq’ — (aflaq’)a/ap1+ (f—p1aflap1)aIax.

Functions 0 on V which satisfy formula 5.4 can be globally identified with
functions on M by Ø(q, p, x) = ~(q, p) exp(ixlh), where we now assumethat

D = hZ (which is allowed becausePer(LI) = {0}). With this identification the

Hilbert space~r is isomorphic to L

2~

1(JR

2hl, Lebesgue)and the operators0(f)

are given by:

0(f)Ø = — lb aflap
1 . a~Iaq’+ lb aflaq’ . aOIap1 + (f—p1 af/ap1)Ø
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or

a~ a a~ a
0(f)=—ih — — + lb — + f—p. —

ap1 aqi aqi ap1 ‘

Substitutingforf the functionsp1 andq’ we find 0(p1) = — ihDI3qi and0(q/) =

= q’ + iha/ap1 asoperatorson L
2~(R2”,Lebesgue).When we comparethis to

the usual Schrodingerquantizationwith O(p
1) = — iha/aq’ and 0(qI) = q’ as

operatorson L
2~(K”, Lebesgue),we see that thesetwo quantizationsdo not

resembleeachother. In fact, they are not equivalentsinceit follows from Van
Hove’s remark [vi] that our quantizationon L2~(K2”,Lebesgue)is reducible

underthe action of theoperators0(p
1) and0(qI), while theSchrOdingerquanti-

zation is irreducible under the action of theseoperators.However, although
L

2~r(K2”, Lebesgue)is reducibleunder0(p
1) and0(q’), Van Hovehasshownin

[vH] that L
2~(1R2”, Lebesgue)is irreducible under the action of the complete

Poissonalgebra.

Example5.21. One of the easiestnon-trivial examplesof a symplecticmanifold

is the sphere~2 with its canonicalsymplecticform w given in polar coordinates
~ by

w =— A sin~ dt~Ad~p

whereA is a (positive)realparameter.Apartfrom beingnon-trivial, this symplectic
manifold alsoplaysanimportantrolein therelationbetweenclassicalandquantum

mechanics(see for instance[So,l] and [Du]): it is the phasespaceof classical
spin. SinceLI is not exact, the groupof periodsof w is infinite andone canshow

that it is given by Per(w) = 4irA7L; it follows that the quantization condition
Per(w) C hZ is equivalent to A = nhI2 for somepositive integer n, giving the

well known quantizationof spin if we interpretA as the classicalspin.
The associatedprincipal fibre bundle with connection(Y, cx) for D = Per(w)

is isomorphic to the Hopf fibration ~3 -+ S2 which can be obtainedin the fol-

lowing way: the sphereS2 is (isomorphicto) the complexprojectiveline IP’(C)

(the Riemann sphere);when one restrictsthe canonicalprojection C2 -+ IP’(C)

to the spheres3 c one obtains the Hopf fibration. The connectionform cx

is (equivalent to) the restriction to S3 of the 1-form a’ ~ if2 given by a’ =

= i ~k(zk dzk — Zk dzk) where(z
1, z2)are the complexcoordinateson if

2

and zt denotesthe complex conjugateof z (seealso §6). The bundles with
D = liZ for A = n h12 can be obtainedfrom the Hopf fibration by taking the

n-fold tensorproduct of the Hopf fibration with itself.
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5C. Duplicatingdiagram(2.3)in classicalmechanics

The contentsrepresentedby diagram (2.3) can be statedas follows: (i) in
quantummechanicsthe elementsof W)r representbijectively the statesof a

system(wherewe ignore super-selectionrules,non-physicalstatesetc.).(ii) There

existsa principal fibre bundleS)r over lP)~°with structuregroup U(l). (iii) If
G is a symmetrygroup of (lP,)V°,P(, )) thenthereexistsa central U( 1) extension
G’ of G which is a symmetrygroup of (S.~°,(,)). (iv) The action of G’ on S)~

projects onto the action of G on lP.?r andtheactionof theextension(thekemel

of G’ -+ G U(I)) is the action of thestructuregroup. (v) With theseproperties
G’ is unique(up to equivalenceof centralextensions).

When we combinethe previoustwo applicationsof the <<centralextensionsof

manifolds>>,we can formulate <<exactly>> thesameresultsfor classicalmechanics,
where the pointsof a symplecticmanifold (M, w) representbijectively the states

of a system.

THEOREM 5.22. Suppose(M, w) is a symplecticmanifoldand Per(w)is discrete;
supposeG is a connectedLie group which is a symmetrygroup of (M, o.,) and

admitsa momentummappingJ,thenfor anydiscreteD D Per(w):

(i) There existsa principal fibre bundle (Y, a) with connectionover (M, w)
(thepre-quantizationbundle)with structuregroupKID U(l).

(ii) There exists a Lie groupcentral KID extensionG’ -÷ G which is a sym-
metrygroupof(Y, cx).

(iii) The action of C’ on V projectsonto theaction of G on M and the action

of the extension(ker(G’ -+ G) KID) is the action of thestructuregroup.
(iv) With thesepropertiesG’ is uniqueup to equivalence.

Whengiven in a diagram this copies diagram (2.3) in the context of classical

mechanics:

C’ —w~.---*(V,a)

(5.5) ,jIr 1 ~
G .w..~w+(M,~)

Proof. According to proposition4.7 (V. a) exists,so we chooseone (if thereis
any choice). Now chooseany point m E M and define theevaluationmap Em

G -*M by E~(g)= ~(g)(m), where4(g) is theactionof the elernentgE G onM.
Sinceeach4(g) conservesthe symplecticform w, the pull backw’ = Em *LI is a

left invariant closed2-form on G, henceit definesa Lie algebraextensionof the
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Lie algebrag of C. We now defmeG’ as thepull backof the bundle Yby means
Of Em , i.e. C’ = {ig, y) e C x YJ Em(S)= 71(y)),we denoteby pr, theprojection
of C’ on the i-th coordinate (i = 1, 2), and~wedefine the form a’ = pr2 *cx
Tracing the constructionof C’, w’ and cx’ one canshow that pr1 : C’ -+ G is a

principal fibre bundle over G with structuregroup RID for which a’ is acon-
nection with dcx’ = lr*LI’ (andin particularone canshow that Per(w’)CPer(w)).
Sincethe action of G on (M, LI) admitsa momentummappingJ, it follows easily
that the left action of C on (C, w’) admits a momentum mappingJ’ (just the

compositeof Em with .1), henceaccordingto (the proof of) theorem5.4 C’ is a
Lie groupcentralextensionof G associatedto the Lie algebraextensiondefined
by w’.

To show that C’ is a symmetrygroupof (Y, a) we usethe ingredientsof the

proof of theorem5.4. The elementAexp~t1(e’)of G’ is obtainedby the flow
through the identity e’ of C’ of the lifted vectorfield X’ (the lift to an infinite-
simal symmetryof (G’, a’) of the right invariant vectorfield X’ on C, uniquely

definedby meansof the momentummapping J’: see §5B); the action of this
elementon V now is the flow (during a time t) of the unique vector field

defmedby the function f = J1 which is theimageunderthe momentummap-
ping of X E g, or in otherwords,r~is the uniquelift of thefundamentalvector
field XM on M definedby the momentummapping. If we defmethe actionof
the central extensionsubgroupKID to be the action of the structuregroup

KID on the principal fibre bundle Y, then it is an easyexerciseto show that
we haveindeeddefinedan action 4)’ of G’ (which is the pull back of Y!) on Y;
moreover,this action leaves the I-form cx invariant becausethe action of the
structuregroupandthe flows of thevectorfields leavea invariant.

We finally outlinethat C’ is unique,sosupposeG” isasecondLie groupwith

the properties (n) and (iii). We start with the choice of a fixed element

y E V. Let g’ E C’, denoteby g = 71(g’) e C thenby property (iii) thereis a
uniqueg” E G” suchthat 71(5”) = g andsuchthat theimagesg’(y)andg”(y) are
equal. Using theconnectednessof M and the fact that G’ andC” leavethe form a

on Y invariant one can show that the actionof g’ is equal to the actionof g” on
the whole of V (not only on the fixed elementy). It follows easily that the cor-
respondenceg’ -÷ g” is an isomorphismof group extensions.To show that it is
also a Lie groupmorphismoneusesalocal descriptionof G” in a neighbourhood
of the identity as C” G x KID and the properties(ii) and (iii) of G”.
QED .

Remark5.23. The aboveconstructionof C’ is carriedout after the choiceof a

special point m E M. However, one can show, independentlyof the proof of
uniquenessof G’. that the cohomologyclassof w’ = Em ~ is locally constantas
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function of m ([So,3]), hence (since we assume that M is connected)the

associatedLie algebraextensionsare equivalent.

Remark 5.24. In the languageof exact sequencesas introducedfor extensions
and principal fibre bundles(remarks3.2 and4.9) diagram(5.5) can be enlarged

to a <<commutative>>diagramin which the uppersequencedenotesthe Lie group
extensionand thelower sequencethe principal fibre bundle:

(0) ~K/D~[ ~{l}

(Y,a) ~(M,w)

Remark 5.25. One canformulateconditions on M or on G which guaranteethe
existenceof a momentummappingindependentof the action of C on M and
independentof the symplectic form LI ([So,l]). (i) If H’~(M, K) = (0) then

all closed 1-formsare exact,especiallythe 1-forms i(XM )w, hencethereexistsa
momentum mapping. (ii) If [g, g] = g (where g is the Lie algebraof C), then

there exists a momentummapping (becauseof the identity i([XM, YM])w +
+ dLI(Xu, ~M) = 0). In the generalcasethe existenceof the momentummap-
ping dependsupon the triple (G, M, LI), G acting on M. If oneof theabovetwo
conditionsis satisfiedand if Per(w) is discrete,then the conditionsof theorem

5.22 are satisfiedand we obtain diagram(5.5) as classical analogueof diagram

(2.3).

Remark5.26. When we comparetheorem5.22 with Wigner’s theorem(theorem

2.1), one difference is obvious: in 2.1 a single symmetry can be lifted to the
principal bundle (obtainingaunitary or anti-unitary transformation)andin 5.22
a whole group is lifted simultaneouslyprovidedsome conditionsare satisfied.
Evenin classicalmechanicsonecansometimeslift a singlesymmetry.If g : M -+ M
is a diffeomorphismof M which leavesLI invariantandif (V. a) is pre-quantiza-

tion bundle overM with structuregroupRID C Per(LI) then thepull-backg*~
of V by meansof g is a pre-quantizationbundleoverM. Henceif H’C(M, KID) =

= (0) theng*Y is equivalentto V andthis equivalencedefinesalift of g (seealso
[So,l], §18and [Wo], §5.6).

Example5.27. Let M be K2” with its standardsymplectic form (example5.20)
andlet G be theabeliangroupK2” which actsastranslationsonM. Denotingthe

coordinateson M by (q, p) and Gby (a, b) we havew = dp.Adq’ and4)(a, b)

(q, p) = (q + a, p + b), hence the pull back LI’ of LI to C is the samefor all
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m EM : w’ = db
1 n da

t. Combiningexamples5.10and 5.20 we see that the Lie

groupextension G’ (which is the Heisenberggroup) is thesameas theprequanti-

zation bundle Y andthat the actionof C’ on V is the left actionof C’ on itself.

Note that the extension C’ in example 5.10 is defined by meansof another

connection form a, than the prequantizationbundle V of example5.20 (i.e.

with .~ (p dq — q dp) + dx insteadof p dq + dx), so onehasto adaptonesetof

coordinatesto get the exactcorrespondence.

Example5.28. In this examplewe modify thepreviousexampleslightly (seealso

example 5.1 1): as symplecticmanifold we useM = T*Sl = lR/7L x K with the

canonicalsymplecticform LI = dp Adq andassymmetrygroupwe taketheabelian

groupG = K x K with theaction4) of C onM definedby: 4(a, b)(q mod Z,p)=

= (q + a mod Z, p + b). The pull back of the symplecticform LI to G is the

standardleft invariant form db A da on C which definesthe Heisenbergextension.

However,the action of G on M doesnot allow a momentummappingso we can

not apply theorem5.22. What we can do is the following: sinceLI is exactthere

exists a pre-quantization bundle V = T*Sl x KIZ with connection 1-form
a = p dq + dx. Whenwe askwhichelementsof G canbe lifted to a diffeomorphism

of V which leavesthe form a invariantand which commuteswith theprojection

onto M (see remark 5.26), an easy calculation shows that only thoseelements

(a, b) E C can be lifted for which b E Z. This fact should becomparedwith the

fact that in quantum mechanicsthe linear momentum of a particleon a circle

is quantised.

Example5.29. The group S0(3) actsas symmetrieson thesymplecticmanifold

(S2, LI) describedin example5.21, it admitsa momentummappingand Per(w)

is discrete,so we can apply theorem5.22. Although LI is not exact,thepull back

to S0(3) is (seeexample5.12);however,theextensionG’ constructedasthe pull
back of the Hopf fibration over ~2 is not the trivial extension(in thesenseof

eitherprincipal fibre bundlesor groups),but theoneobtainedfrom SU(2)x U(I)

by taking the quotient with respectto the normal subgroup~(id,1), (— id, — 1))
(seealso remark4.15). This phenomenonis known in quantummechanicswhere

one saysthat for SO(3) one canget rid of the phasefactor (corollary 2.2) up to

a sign.
If we useSU(2) as symmetrygroupof(S2, LI) insteadof S0(3)(wherewe can

visualise the action of SU(2) on S2 either via the projection on S0(3) or as the

action of SU(2) on IP’(if) = S2 induced by the action of SU(2)on if 2), then
the extension C’ defined by theorem 5.22 is necessarilythe trivial extension

C’ = SU(2) x U(l) and the action of G’ on the Hopffibration S3 then is given

as follows: (A, exp(i~)) E SU(2) x U(1) acts on if2 as first A and then
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exp(ii~). id(if2); this is a unitary action on (F2 so it inducesan action on

which is theaction of C’ on V as definedby theorem5,22.

It is now easy to seehow the non trivial extensionof SO(3)by U(l) above

arises:the element (— id, 1) E SU(2)x U(l) doesnot act on (F2 as the identity

whereas(— id, — 1) does!

6. MORE ANALOGIES

In this section we will show that the resemblancebetweendiagram 2.3 and

diagram 5.5 is not as superficial as onemight think: quantummechanicscanbe

cast in the symplectic formalism in such a way that (i) lPJr is a symplectic
manifold (with a canonically definedsymplecticform), (ii) S)~”is theassociated

principal fibre bundle with connectionover IP~°and (iii) the Schrodingerequa-
tion is equivalentto the flow of a vectorfield on the prequantizationbundle

5)~°which is thelift of a hamiltonianvectorfield on the phasespaceIP)r (see

also § SB). To achievethesegoals we will work in the categoryof smoothmani-

folds modeledon a Hilbert space;our basicreferencesare [La] and [Ch&Ma].

6.1. The manifolds: Suppose)~°is a separablecomplexHubertspacewith inner

produtc(,) (which weassumeto belinearin thesecondvariableandanti-linearin
thefirst), then it isclearlyamanifold modeledonthe underlyingrealHilbert space

and S?r is a submanifold of .t°; moreover, the complexprojectivespaceW~”

(the set of complex lines in~$°) is alsoa manifold modeledon a Hilbert space
for which the projection ir : )~°\{0}-+ W.t°is a submersion.N.B. If )t°= ifs?
then .)~°is modeledon 1R2”, S)r = S2”1 is modeledon K2”’ and W)~°=

= F”’(if) is modeled on IR2”~~f)~°= l~(if)then~r,S)�°and 1P~~*’are all

modeledon 12(K).

6.2. Local charts: For any m E ~° with (in, m> = 1 we can define Um C IP~�°

asthesetoflines(fxin.)rwith (m,x)�zO,hence7r’(Um){X E ~°J<m, xYpO};
defining the (complex) Hilbert space)f°’ by ,~“ ={x E JP°J(m,x) = 0}(all
/1” for different m are isomorphic!)then lP)~°is modeledon .)V” and the pro-

jection7r:7C~’(U~)-4U~~)t°’isgivenby:

71 :x-+z =(m,xY1x—m.

Whenwe restrictthe projectionx to theunit sphereS.)t°,thelocal chart Urn

definesa local chart .~$‘~‘x U(1) for S)f°(S)f°is a U(l) bundleover W)~°)by:

(6.1) ~r’x U(I)~(z,e’°)+—*(l +(z,z))112e~°(z +m)ESY( c)r

where onehasto recall that z E ~‘ ~ (in, z) = 0. It is easyto seethat the action
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of the structuregroupU(l) of theprincipal fibre bundle S)f°over W)~°is given

on the local chart .Yr” x U(l) just by multiplication in thesecondcoordinate,

hencethesechartsarebundlecharts.

6.3. Connectionand symplectic forms: On the complex Hubert space)f° one

has the canonically defined real symplectic form a definedby a~(u,w) = 2
Im (v, w) where we have identified T~~f° with .)~‘. However, this form is NOT

the pull back of a 2-form on IP.?f°,so if we want to define a symplectic form

on IP)f°we have to be more careful. When we restrict the 2-form a to the unit

sphereS~#’we obtain a 2-form on S~f°which IS the pull backof a 2-form LI

on W~f°(a pull back to S)Y’)! On the local chart ~°‘ of IP Jf°the form LI is

givenby:

(v, w) — (w, v) (u, z )(z, w ) — (w, z >(z, v)
LI (v,w)= — ____________________

Z i(l + (z, z)) i(l + (z, z)) (1 + (z,z))

or in termsof forms:

(dz,Adz) (dz,z)A(z,dz)
LI = _____ — ___________

Z i(l + ~z,z)) i(l + (z,z)) (1 + (z, z))

Sincea is closed,it is closedon S)f°andbecause7r*LI = a (onS~f°!)LI is closed.

Moreover, it is not hard to show that LI is stronglysymplecticin the sensethat
themap v -* i(v)w~from T~lP?f°to T2*J~)~Ois anisomorphism.

The form a is not only closed, but alsoexact: it is the exterior derivativeof

the 1-form a on )f° defined by: a~(v)= Im (x, v). When we restrict this form

to S~?f°,we can expressit in terms of the coordinates(z, e~°)defined by for-

mula 6.1:

(z, v>—(v,z)
a(~0)(t), ra0) = r +

2i(l +(z,z))

or in termsof forms:

(z, dz)—(dz,z)
a =dO+(zo) 2i(l + (z, z))

From this formula it is clear that arestricted to S~)ris a connection 1-form on

the principal fibre bundle S.Y( over W)~°with dcx = ir~w.Moreover, one can

show [vE,3] that in all cases(finite or infinite dimensional) Per(LI) = 2irZ,

showingthat (S~°,a) is a pre-quantizationof the (strongly) symplecticmanifold
(IP.)f°,LI) in -the senseof § SB with D = Per(LI). Becausethecomplexprojective

spacesaresimply connected,this pre-quantizationis unique.
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Remark6.4. In the finite dimensionalcase = if” the form cx is usuallygiven

in thecomplexcoordinates(x1 x~)by:

= 21 i E1(x1 dx1~— x1t dx1)

where~ denotescomplexconjugation.In real coordinates(p, q) with x.= p1 + iq1

the form cx is expressedas ~1(p1dq1 — q1 dp1) showingthat (up to a factor 2) the

symplecticform a on )f°isthe canonicalsymplecticform on lR
2”.

In the case n = 2 the associatedprojectivespaceIP C2 = IP’(C) = ~2 is the

Riemannsphereand the symplectic form w definedaboveis the sameone as the
symplecticform definedin example5.21 with A =

Remark6.5. As alreadysaid, a is not thepull backof LI, so onemight askwhich

formis the pull backof w:

(dx,Adx> (dx,x)A(x,dx) (x,dx)—(dx,x)
(71’~’w) = _____ — =d = d~.i(x,x) i(x,xXx,x) 2i(x,x)

This pull backis not definedin the origin, which is obvioussincetheprojection to

IP)t°is only definedon non-zerovectors.We alsohavea projectionfrom~f°\{0}
to the unit sphereSY((x-+ xf x 1) and the 1-form f3 aboveis the pull back to
)~°\{0}of therestrictionto S)’I’ of the 1-form cx on

6.6. The SchrOdingerequation: Let H be a self adjoint operatoron .f°which
defines the time evolution of the quantumsystemby meansof the Schrodinger

equation:

dx(t)/dt = (ilh)Hx(t).

We can view this equationas the equationof the flow of a vector field v on~f°

definedby: v~= (ilh)Hx, which posesonly oneproblem: thisvectorfield is not

defined for all x (in general).However, our point of view is that the important
feature of a vector field is the flow it determines-and a self adjoint operator

defines a flow (even a 1-parametergroup of unitary transformationsof )f°),

hencewe will not be botheredby the fact that in the sequelsome functions
andvectorfields arenot definedeverywhere.

The important property of the vector field v associatedto the Schrodinger

equationis that it projectsdown to IP)f°,more precise:denoteby H the real
function on lP)f°definedby theequation:

(71*H)(x) = (x, Hx )I(x, x) (theexpectationvalueof H in statex)
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then thevectorfield v obeystheequation:

i(v)(lr*hLI) + dlr*H = 0

which shows that ir~vis the hamiltonian vector field on W~ with respectto

the symplectic form hLI associatedto the observableH. We can do evenmore:

the restrictionof vto theunit sphereSYt°satisfiesha(u) = ir*H, hencev (restricted

to S~°)is the unique lift (proposition 4.17) of the hamiltonian vector field

associatedto the observableH : .)f°-÷ JR. The aboveresultsaresummarisedin

the following proposition.

PROPOSITION 6.7. Whenwe apply the processofpre-quanrizationof §4 and §5B

to the symplectic manifold (W~f°,hLI) with discrete D = Per(hLI) = h7, then

we obtain the unique pre-quantization bundle (5~~0, ha) over lP~f°.Moreover, if

H is any self adjoint operator on Yt’andH : lP.)f°-÷Rthe associated expectation

value function on W~f°, then the unique lift of the hamiltonian vector field

on IP~f° to a vector field
17H on SYt’ is the restriction of the Schrodinger

equationto the unit sphereS~°.

Remark6.8. Applying the processof geometricquantization to the symplectic

manifold (IR)f°, hLI) we- can do even better:using the anti-holomorphicpolari-

zation on the Kähler manifold- (lP~f°,hLI) the Hilbert spacederived by means

of geometricquantizationis the sameas the original 1-lilbert spaceYt’ we started

with.

For those who are familiar with geometric quantization we briefly outline

the proof of the above statement.The Hilbert space constructedby geometric

quantization consists of if-valued smooth functions f on the prequantization

bundle satisfying certain conditions,among which is the condition thatf(e’°x)=

= e’°f(x).Now for any yE Yt’ we can define a functionf,, on Sif°byf~(x)=

= (y, x) which has this property. If we canshowthat thesefunctionsare the

only ones,then we haveproven our claim. Thereforeletf: Sit°-÷ C be a smooth

function satisfying f(e’°x)= &°f(x), then we can definea smooth function f
on if°\{O} by: f’ (x) = x f(x/ x II) whereJj x = (x, x >1/2 denotesthenorm

of x. The function f satisfies the equationf(Xx) = Xf(x) for A E C and is

obviously smooth on )f°\{0}. Having chosenthe anti-holomorphicpolarization,
the condition that f should be covariant constantin the directionof this polari-

zation together with the homogeneityproperty translatesto the condition that

f should be holomorphic on Yt’\{O}, i.e. the (real) derivativeof f should be

complex linear. Now take any two vectorsx, y E Yt’\{O}, then the function

f# defined on C2\{O} by f#(X, ~) = f’(Ax + py) is holomorphic, henceby

Hartog’s theorem it is defined on the whole of t1i~2sinceit is homogeneousof
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degree1 it is necessarilycomplexlinear, which shows that the original function

f is complex linear. Finally f is linearandsmoothon Yt’\{O}, henceit is conti-

nuousin0, soit definesan elementyof Yt’such thatf is given byf(x)=(y, x>.

One final remark: apartfrom the condition that the function f should be co-

variant constant in the direction of the polarization, the processof geometric

quantizationimposesthe condition that f should be squareintegrableover the

symplecticmanifold. In the finite dimensionalcasethis posesno extracondition

on the functionsf, but in the infinite dimensionalcaseoneshould integrateover

the infinite dimensionalnon-compactmanifold IP~#’,which is (as far aswe know)

not defined.This missingprocedureis the only shadowon the aboveresult that

geometricquantizationapplied to (IPYt’, hw) recoversthe original Hilbert space

~r.

6.9. On Wigner’s theorem: Now that we know that quantummechanicscan be
formulated as symplectic mechanics, we have two definitions of symmetry: a

quantummechanical one which tells us that a diffeomorphismg : IPYt’ ~ IPYt’

is a symmetry if it conservestransitionprobabilities(the absolutevalue squared
of the inner product, see§2) anda classicalone which tells us thatg is a sym-

metry if it leavesthe symplectic form hLI invariant. The questionarisesnaturally
whetherthese two definitions coincide, or more generally,whetherthere is any

connectionbetweenthesetwo definitions.

In the finite dimensionalcase(dim It’ < oo) this questioncan be answered:a

diffeomorphism g conservestransition probabilities if and only if g leavesthe

symplectic form invariant and conservesthe complex structure (i.e.g should

be holomorphic). The only if part is an easyconsequenceof Wigner’s theorem

(wherewe forget the possibilitythat the lift to It’can be anti unitary becausewe
arealways interestedin connectedLie groupsof symmetries).The if partrequires

(a consequenceof) a theoremof Chow: if g is aholomorphicdiffeomorphismof

IP”(C) then it is projective linear, i.e. it is induced by a linear isomorphismof
C” + 1 Using this theoremit is an elementarycalculation to showthat if g also

conservesthe symplecticform, then it is induced by aunitary transformationof

It’, which implies thatg conservesthe transition probabilities.

In the infinite dimensional casewe do not know of an equivalentof Chow’s

theorem,so (for us) it is an open questionwhether there existssuch arelation

betweenthetwo definitionsof symmetries.

7. SUMMARY AND DISCUSSION

In the previoussectionswe havestudied two questions:the first onea mathe-

matical problem:given a Lie group C with Lie algebra~, what arenecessaryand
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sufficient conditions on a Lie algebra centralextension (of dimension 1) of g

such that thereexistsa Lie group centralextensionof C by a 1-dimensionalLie

group associatedto this algebraextension?The secondquestionwas a question

in physics: in quantummechanicsasymmetry groupC doesnot a priori act on
the Hilbert space,but only upon the projectiveHubertspace;using Wigner’s

theoremone shows that a central extensionof C (by U( 1)) acts as (unitary)

transformationson the Hilbert space(diagram (2.3)). We askedif an analogous

situationoccursin classicalmechanics.
We showedthat the answersto bothquestionsinvolved the sameconstruction:

a central extensionof a manifold;more precisely:the constructionof a principal
fibre bundle with connectionoverthe manifoldwith specifiedcurvatureform (1).

Moreover, the answersare (<the same>>:givena Lie algebraextensiondefinedby a

closed left invariant 2-form w, a Lie group extensionexists if and only if the
groupof periodsof w is discreteand if w admitsa momentummapping(for the
left action of C on itself); diagram(2.3) in quantummechanicscanbe duplicated

in classicalmechanicsprovided that the group of periodsof the symplecticform
LI on the phasespace is discrete (to guaranteethe existenceof a pre-quantum

bundle)andadmits amomentummapping.It shouldnot come asasurprisethat
theanswersare <<the same>>becausethecentralextensionof a symmetrygroupC
in the classicalanalogueof diagram (2.3) is constructedwith as closedleft inva-
riant 2-form thepull backof thesymplecticform.

Although we can duplicate diagram (2.3) for classicalmechanics,thereare
some important differences.Wigne~r’stheoremtells us that for every symmetry
group thereexistsa centralextensionwhich actson the Hilbert space;in classical
mechanicsnot every symmetry group admits a centralextensionwhich acts on

the pre-quantumbundle.The exampleto illustrate this differenceis a 1-dimen-
sional particle with the circle S’ as configurationspace (henceT*Sl as phase
space:example5.28): the classicalsymmetrygroupof translationsin positionand
momentumdoesnot admita momentummapping,hencecannotbe <<lifted>> to

the pre-quantumbundle. In quantummechanicsthis groupis not a symmetry

group; the 1-dimensionalgroup of translationsin position is a quantummecha-
nical symmetrygroup (with themomentumoperatorasinfmitesimal generator),

but a positionoperatordoesnot exist. However, thesedifferencesdisappearand
the analogybetweenquantummechanicsand the pre-quantizationformulation
of classicalmechanicsbecomesstriking if we realisethat translationsin position

(1) The questionabout the relation of arbitrary abelianextensions(not only centralones)
of Lie groupsand Lie algebrascanbetreatedin the sameway, requiringaminor modification
of theconstructionof <<extensionsof manifo1ds~.
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admits classicallya momentummappingandcanhencebe <<lifted>>, that a discrete

subsetof the translationsin momentumcan be lifted to thepre-quantumbundle
(example5.28),andthat thereexists in quantummechanicsa discretesymmetry

group(of unitary transformationson the Hilbert space)representingshifts in the

discretespectrumof the momentum operator.Hence,althoughWigner’s theorem

andtheorem 5.22 differ superficially in the conditionsimposedon thesymmetry
group, neverthelessupon closer scrutiny they offer striking analogiesbetween

quantummechanicsand thepre-quantizationformalism (i.e. the constructionof

thepre-quantumbundleover thephasespace).

In the last section we showedthat the analogybetweenquantummechanics
and the pre-quantizationformalism can be extendedeven further: quantum
mechanicsitself can be formulated as a classical system. Its phasespaceis the

(infinite dimensional) projective Hilbert space with its canonical (strongly)

symplecticform and the SchrOdingerequation definesthe flow of a hamiltonian

vector field on theprojectiveHilbert spaceassociatedto the (real) function which

gives the expectationvalue of the hamiltonoperator. Moreover,the unit sphere

in the Hilbert spaceis the uniquepre-quantumbundle over thequantummecha-

nical phase space, which shows that the pre-quantumformulation of classical

mechanicsfits naturallyinto the quantumtheory. Last but not least:application

of the procedureof geometricquantizationto theclassicalsystemdefinedby the
projective 1-lilbert spaceyields the original Hilbert space(modulo sometechnical

<<details>>), which completesthe circle: from quantummechanicswith a Hilbert

spaceto classicalmechanicsin theprojectivefilbert spaceto quantummechanics
in the original Hilbert spaceby meansof geometricquantization.

Finally we want to point out another use of the generalmethod of central

extensionsof manifoldsin physics, onewhich is closely related with pre-quanti-

zation (in fact it is pre-quantizationbut not on a symplecticmanifold). The usual

description of classical mechanicsis by meansof a symplecticmanifold (M, LI)

(the phasespace)and a hamiltonian function H (the energy,whosehamiltonian

vector field determines the time evolution). An equivalent description is by

meansof an evolution spaceE = M x JR with a closed2-form a = LI — dHA dt

wheret is thecoordinateon the time axisJR in E = M x JR. The time evolution of

the system then is describedby the kernel of this 2-form a: the trajectories (in

time) of the system are the integral curves of the 1-dimensionalkernel of a
(this description of classicalmechanicsis strongly favoredby Souriau[So, 1]: we

will show somereasonswhy). One of theadvantagesof this descriptionis that

the hamiltonian function H now may dependon the time t: we can describein

a naturalway time dependentsystems.In this context a symmetry group is a
group of diffeomorphismsof E which leave a invariant (i.e. if they arise from
symmetrieson the symplecticmanifold they have to be diffeomorphismswhich
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leave w andH invariant). Again the advantageis that timedependentsymmetries
can bedescribedeasily.

Since a is-a closed2-form we can constructa pre-quantumbundle (Y, cx) over

the evolutionspace(E, a) accordingto the constructionof §4 (assumingthat the
group of periodsof a is discrete,which it is if ~ahasdiscreteperiods).If C is a

symmetry group of E which admits a momentummapping,then this definesa
central extensionC’ of G which is a symmetrygroupof Y; the construction is

exactly the sameas in the symplecticcase:G’ is thepull-backof Y (seetheorem

5.22). Let us explain why this is so interesting: if the Galilei groupGal (which
containstime dependenttransformations!)is a symmetry groupof theclassical

systemdescribedby the evolution spaceE, then the existenceof a momentum

mappingexhibitsall 10 conservedNoetherquantities(not only the widely known
7 conservedquantities: total energy (I), total linear momentum(3) and total

angular momentum(3); see also [So,lJ). Moreover, the central extensionGal’
which actsupon the pre-quantizationbundle Y is the Bargmanngroup, which

usually occursin quantumphysicsas the symmetrygroupof the non-relativistic
Schrodingerequation.Finally, the pre-quantizationbundle Y we obtain in this

fashionis exactlythe sameprequantizationbundleoneusesin geometricquanti-
zation when one applies this quantizationmethod to time dependentsystems
(see [Sn, §9] andreferencescitedthere).
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